
Quasi Deterministic Radio Channel Generator
User Manual and Documentation

Document Revision: v1.2.32-458
March 23, 2015

Fraunhofer Heinrich Hertz Institute
Wireless Communications and Networks
Einsteinufer 37, 10587 Berlin, Germany

e-mail: quadriga@hhi.fraunhofer.de
http://www.quadriga-channel-model.de

http://www.quadriga-channel-model.de

QuaDRiGa v1.2.32-458

Contributors

Editor: Fraunhofer Heinrich Hertz Institute
Wireless Communications and Networks
Einsteinufer 37, 10587 Berlin, Germany

Contributing Authors: Stephan Jaeckel, Leszek Raschkowski, Kai Börner and Lars Thiele
Fraunhofer Heinrich Hertz Institute

Frank Burkhardt and Ernst Eberlein
Fraunhofer Institute for Integrated Circuits IIS

Grants and Funding

This work was supported by

• the European Space Agency (ESA) in the Advanced Research in Telecommunications Systems (ARTES)
programme under contract AO/1-5985/09/08/NL/LvH (Acronym: MIMOSA), [1]
http://artes.esa.int/projects/mimosa-characterisation-mimo-channel-mobile-satellite-systems

• the German Federal Ministry of Economics and Technology (BMWi) in the national collaborative project In-
telliSpektrum under contract 01ME11024
http://www.intellispektrum.de

• the European Commission co-funded the project METIS as an Integrated Project under the Seventh Framework
Programme for research and development (FP7)
http://www.metis2020.com

• the GreenTouch consortium within the funded project “LSAS Channel Modelling”
http://www.greentouch.org

Acknowledgements

The authors thank G. Sommerkorn, C. Schneider, M. Kaeske [Ilmenau University of Technology (IUT),
Ilmenau, Germany] and V. Jungnickel [Heinrich Hertz Institute (HHI), Berlin, Germany] for the fruitful
discussions on the QuaDRiGa channel model and the manuscript of this document.

How to Cite this Document

[2] S. Jaeckel, L. Raschkowski, K. Börner, L. Thiele, F. Burkhardt and E. Eberlein, ”QuaDRiGa
- Quasi Deterministic Radio Channel Generator, User Manual and Documentation”, Fraun-
hofer Heinrich Hertz Institute, Tech. Rep. v1.2.32-458, 2015.

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

2

http://artes.esa.int/projects/mimosa-characterisation-mimo-channel-mobile-satellite-systems
http://www.intellispektrum.de
http://www.metis2020.com
http://www.greentouch.org

QuaDRiGa v1.2.32-458 Contents

Contents

1 Introduction and Overview 11
1.1 Installation and System Requirements . 11
1.2 General Remarks . 11
1.3 Introduction to QuaDRiGa . 12
1.4 Continuous time evolution . 14
1.5 QuaDRiGa Program Flow . 15
1.6 Description of modeling of different reception conditions by means of a typical drive course . 16

2 Software Structure 20
2.1 Overview . 20
2.2 Description of Classes, Properties, and Methods . 22

2.2.1 Class “simulation parameters” . 23
2.2.2 Class “array” . 25
2.2.3 Class “track” . 31
2.2.4 Class “layout” . 36
2.2.5 Class “parameter set” . 41
2.2.6 Class “channel builder” . 44
2.2.7 Class “channel” . 46

2.3 Data Flow . 49
2.4 Scenario Specific Parameters . 50

2.4.1 Description of the Parameter Table . 50
2.4.2 Adding New Scenarios . 54

3 Technical Documentation 56
3.1 Correlated Large-Scale Parameter Maps . 57
3.2 Initial Delays and Path Powers . 60
3.3 Departure and Arrival Angles . 61
3.4 Drifting . 64
3.5 Antennas and Polarization . 66

3.5.1 Relation between the Polarization Model and the Jones Calculus 66
3.5.2 Changing the Orientation of Antennas . 68
3.5.3 Constructing the Polarization Transfer Matrix . 70

3.6 Combining Sub-Paths into Paths . 72
3.7 Path Gain, Shadow Fading and K-Factor . 73
3.8 Transitions between Segments . 73
3.9 Postprocessing / Variable Speeds . 74

A Tutorials 75
A.1 Network Setup and Parameter Generation . 75
A.2 Simulating a Measured Scenario . 79
A.3 Generation of Satellite Channels . 83
A.4 Drifting Phases and Delays . 91
A.5 Time Evolution and Scenario Transitions . 95
A.6 Applying Varying Speeds (Channel Interpolation) . 100
A.7 Geometric Polarization . 104
A.8 Visualizing RHCP/LHCP Patterns . 108
A.9 How to manually set LSPs in QuaDRiGa . 110

B Departure and Arrival Angles (Adopted WINNER Method) 114

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

3

QuaDRiGa v1.2.32-458 List of Tables

List of Figures

1 Simplified overview of the modeling approach used in QuaDRiGa 13
2 Typical driving course . 16
3 UML class diagram of the model software. 21
4 QuaDRiGa Data Flow . 49
5 Steps for the calculation of time-evolving channel coefficients 56
6 Principle of the generation of channel coefficients based on correlated LSPs 58
7 Map-based 2-D autocorrelation shaping using FIR filters . 59
8 Maximal achievable angular spread depending on the K-factor 63
9 Scatterer positions and arrival angles . 64
10 Example showing the effect of the new polarization rotation method 67
11 Example patterns for a dipole antenna . 68
12 Illustration of overlapping segments and variable MT speeds 74
13 Distribution of the users in the scenario. 76
14 Comparison of input values and simulation results . 77
15 Scenario setup for the comparison of simulated and measured data 80
16 2D PDP of the simulated track . 80
17 Results for the measurement based simulation tutorial . 82
18 Receiver track for the satellite channel tutorial . 84
19 Antenna patterns for the satellite channel tutorial . 85
20 Results for the satellite channel tutorial . 90
21 Scenario setup for the drifting phases tutorial . 91
22 Cluster delays vs. Rx position (drifting phases tutorial) . 92
23 Drifting phases and Tx power vs. Rx position (drifting phases tutorial) 93
24 Phases and Tx power vs. Rx position without drifting (drifting phases tutorial) 94
25 Scenario setup for the time evolution tutorial . 96
26 Received power on the circular track (time evolution tutorial) 97
27 Received power on the linear track (time evolution tutorial) 99
28 Scenario setup for the speed profile tutorial . 101
29 Received power and 2D PDP for the speed profile tutorial . 101
30 Movement profile (left) and interpolated PDP (right) . 103
31 Polarimetric dipole antenna patterns for different orientations 104
32 Scenario layout . 105
33 Results from the geometric polarization tutorial . 106
34 RHCP / LHCP antenna patterns . 109
35 Scenario overview (manual parameter selection) . 111
36 Power along the track (manual parameter selection) . 113
37 DS along the track (manual parameter selection) . 113
38 Visualization of the angular spread correction function Cφ(L,K) 115

List of Tables

1 QuaDRiGa System Requirements . 11
9 Parameter sets provided together with the standard software 50
11 Offset Angle of the mth Sub-Path from [3] . 64
12 Correction values from [3] for different numbers of paths . 116
13 Comparison of the correction functions . 116

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

4

QuaDRiGa v1.2.32-458 List of Acronyms

List of Acronyms

2-D two-dimensional
3-D three-dimensional
AoA azimuth angle of arrival
AoD azimuth angle of departure
AS angular spread
ASA azimuth spread of arrival
ASD azimuth spread of departure
BS base station
CIR channel impulse response
DS delay spread
EoA elevation angle of arrival
EoD elevation angle of departure
ESA elevation spread of arrival
ESD elevation spread of departure
FBS first-bounce scatterer
FIR finite impulse response
GCS global coordinate system
i.i.d. independent and identically distributed
KF Ricean K-factor
LBS last-bounce scatterer
LHCP left hand circular polarized
LOS line of sight
LSP large-scale parameter
MIMO multiple-input multiple-output
MIMOSA MIMO over satellite
MPC multipath component
MT mobile terminal
NLOS non line of sight
PDP power delay profile
PG path gain
PL path loss
RHCP right hand circular polarized
Rx receiver
SCM spatial channel model
SF shadow fading
SISO single input single output
SSG state sequence generator
STD standard deviation
Tx transmitter
UML unified modeling language
WGS world geodetic system
WINNER Wireless World Initiative for New Radio
WSS wide-sense stationary
WSSUS wide sense stationary uncorrelated scattering
XPR cross polarization ratio

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

5

QuaDRiGa v1.2.32-458 Glossary

Glossary

base station (BS) . 56
The term base station (BS) refers to a fixed transmitter which utilizes one or more transmit antennas
to serve one or more MTs. BSs might further use sectors to increase the capacity. Usually, BSs
operate independent of each other which might lead to inter-BS interference if they use the same time
and frequency resource.

cell . 57
Synonym for sector.

cluster . 70, 73
A cluster describes an area where many scattering events occur simultaneously, e.g. at the foliage of
trees or at a rough building wall. In the channel model, each scattering cluster is approximated by 20
single reflections. Each of those reflections has the same propagation delay.

drifting . 64
Drifting occurs within a small area (about 20-30 m diameter) in which a specific cluster can be seen
from the MT. Within this area the cluster position is fixed. Due to the mobility of the terminal the
path length (resulting in a path delay) and the arrival angels change slowly, i.e. they “drift”.

large-scale parameter (LSP) . 57
The term “large scale parameter” refers to a set of specific properties of the propagation channel.
Those are the “delay spread”, the “K-factor”, the “shadow fading”, the “cross-polarization ratio”,
and four “angular spread”-values. Those properties can be extracted from channel sounding data. If
a large amount of channel measurements is available for a specific propagation scenario and the LSPs
can be calculated from those channels, statistics of the LSPs, e.g. their distribution and correlation
properties can be obtained. A complete set of such statistical properties forms a “parameter table”
that characterizes the scenario.

mobile terminal (MT) . 56
Mobile terminals (MTs) are mobile receivers with one or more receive antennas. They are usually
assigned to a serving BS which delivers data to the terminal.

multipath component (MPC) . 56
Synonym for path.

path . 61, 64, 72, 73
A path describes the way that a signal takes from the transmitter to the receiver. In the channel
model, there is usually a direct, or LOS path, and several indirect, or NLOS paths. Indirect paths
involve one or more scattering events which are described by clusters. However, paths do not describe
single reflections but combine sub-paths that can not be separated in the delay domain. Usually, the
channel model uses 6-25 paths to describe the propagation channel.

scattering cluster . 56
Synonym for cluster.

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

6

QuaDRiGa v1.2.32-458 List of Symbols

scenario . 57
In this thesis, the term scenario refers to a specific propagation environment such as “Urban macro-
cell”, “Urban satellite”, “Indoor hotspot”, etc. Usually, each propagation environment can be further
split into LOS and NLOS propagation (e.g. “Urban macro-cell LOS” and “Urban macro-cell NLOS”),
both of which might have very different properties. In the channel model, each scenario is fully
specified by a parameter table.

segment . 57, 64, 73
Segments are parts of a user trajectory in which the LSPs do not change considerably and where the
channel keeps its WSS properties. Typical segment lengths are 5-30 m. It is assumed that within a
segment, the scattering clusters are fixed.

sub-path . 63, 72
A sub-path is the exact way that a signal takes from the transmitter to the receiver. It contains at least
one reflection. However, normally the channel model uses two scatterers (resulting in two reflections)
to create a sub-path. 20 sub-paths are combined to a path. The LOS path has no sub-paths.

time evolution . 56, 64
Time evolution describes how the propagation channel changes (or evolves) with time. In the channel
model, two effects are used to describe this time-dependency: drifting and the birth and death of
scattering clusters during the transition between segments. The propagation environment is considered
static and, thus, the model includes time-evolution only when the receiver is moving.

user . 58
Synonym for mobile terminal.

List of Symbols

γ Polarization rotation angle for the linear NLOS polarization in [rad] 71
λ Wavelength in units of [m] . 56, 65
φ Azimuth angle in [rad]. φ can be used for φd or φa 61, 62, 66, 114, 115
φa Azimuth angle of arrival (AoA) in [rad] . 61, 63, 64
φd Azimuth angle of departure (AoD) in [rad] . 61, 63, 64

φ̂ The offset angle between the path angle φ of the mth sub-path in [degree] 63
ψ Phase of a path in [rad] . 65, 72
ρ Correlation coefficient . 60
σφ The RMS angular spread in [rad] . 62, 114, 115
στ The RMS delay spread in units of [s] . 57, 60, 61
τ Delay of a MPC in units of [s] . 60, 61, 64, 65
θ Elevation angle in [rad]. θ can be used for θd or θa . 62, 66
ϑ Polarization rotation angle in [rad] . 69, 70
θa Elevation angle of arrival (EoA) in [rad] . 61–64
θd Elevation angle of departure (EoD) in [rad] . 61–64
ζ A coefficient describing additional shadowing within a PDP 60
a Vector pointing from the position of the LBS to the Rx position 65, 70
B Bandwidth in units of [Hz] . 56
B LSP map represented as a matrix with real-valued coefficients 58
b Vector pointing from the Tx position to the position of the LBS 65
c Speed of Light . 64, 65
c Representation of the departure or arrival angle in Cartesian coordinates 68

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

7

QuaDRiGa v1.2.32-458 References

cφ The scenario-dependent cluster-wise RMS angular spread in [degree] 63
d Length of a propagation path in [m] . 64, 73
dλ Decorrelation distance in [m] where the autocorrelation falls below e−1 58
er,s Vector from the Rx position to Rx antenna element r at snapshot s 65
F Polarimetric antenna response . 66, 69
fS Sampling Rate in [samples per meter] . 57
fT Sampling Rate in [samples per second] . 56
g Channel coefficient in time domain . 66
K Ricean K-Factor, linear scale . 60, 114
k Filter coefficient index . 59

K [dB] Ricean K-Factor, logarithmic scale . 115
L Number of paths . 60, 61, 114, 115
l Path index, l ∈ {1, 2, ..., L} . 60, 61, 64
m Sub-path index, m ∈ {1, 2, ..., 20} . 63, 64
M Polarization coupling matrix . 66
N Normal distribution N (µ, σ2) with mean µ and STD σ 60–63, 71, 72, 114
P Power . 60, 61, 72, 114, 115
r Receive antenna index; r ∈ {1, 2, ..., nr} . 64
R Rotation matrix . 69
r Vector pointing from the Tx position to the Rx position 64, 65, 70
rτ Proportionality factor to trade between delays and path powers 60
S Number of snapshots . 72
s Snapshot index s ∈ {1, 2, ..., S} . 64
t Transmit antenna index; t ∈ {1, 2, ..., nt} . 64
U Continuous uniform distribution U(a, b) with minimum a and maximum b 60, 66
v Speed in [m/s] . 56
X A random variable . 60, 71, 114
X Matrix containing the inter-parameter correlation values 60
Y A random variable . 114
Z A random variable . 60, 66

References

[1] E. Eberlein, T. Heyn, F. Burkhardt, S. Jaeckel, L. Thiele, T. Haustein, G. Sommerkorn, M. Käske,
C. Schneider, M. Dominguez, and J. Grotz, “Characterisation of the MIMO channel for mobile satellite
systems (acronym: MIMOSA), TN8.2 – final report,” Fraunhofer Institute for Integrated Circuits (IIS),
Tech. Rep. v1.0, 2013.

[2] S. Jaeckel, L. Raschkowski, K. Börner, L. Thiele, F. Burkhardt, and E. Eberlein, “QuaDRiGa - Quasi
Deterministic Radio Channel Generator, User Manual and Documentation,” Fraunhofer Heinrich Hertz
Institute, Tech. Rep. v1.1.0-248, 2014.

[3] P. Kyösti, J. Meinilä, L. Hentilä et al., “IST-4-027756 WINNER II D1.1.2 v.1.1: WINNER II channel
models,” Tech. Rep., 2007. [Online]. Available: http://www.ist-winner.org

[4] P. Heino, J. Meinilä, P. Kyösti et al., “CELTIC / CP5-026 D5.3: WINNER+ final channel models,”
Tech. Rep., 2010. [Online]. Available: http://projects.celtic-initiative.org/winner+

[5] C. Schneider, M. Narandzic, M. Käske, G. Sommerkorn, and R. Thomä, “Large scale parameter for the
WINNER II channel model at 2.53 GHz in urban macro cell,” Proc. IEEE VTC ’10 Spring, 2010.

[6] M. Narandzic, C. Schneider, M. Käske, S. Jaeckel, G. Sommerkorn, and R. Thomä, “Large-scale pa-
rameters of wideband MIMO channel in urban multi-cell scenario,” Proc. EUCAP ’11, 2011.

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

8

http://www.ist-winner.org
http://projects.celtic-initiative.org/winner+

QuaDRiGa v1.2.32-458 References

[7] H. Xiao, A. Burr, and L. Song, “A time-variant wideband spatial channel model based on the 3gpp
model,” Proc. IEEE VCT ’06 Fall, 2006.

[8] D. Baum, J. Hansen, and J. Salo, “An interim channel model for beyond-3G systems,” Proc. IEEE
VCT ’05 Spring, vol. 5, pp. 3132–3136, 2005.

[9] [Online]. Available: http://www.quadriga-channel-model.de

[10] S. Jaeckel, K. Börner, L. Thiele, and V. Jungnickel, “A geometric polarization rotation model for the
3-D spatial channel model,” IEEE Trans. Antennas Propag., vol. 60, no. 12, pp. 5966–5977, 2012.

[11] A. Algans, K. Pedersen, and P. Mogensen, “Experimental analysis of the joint statistical properties of
azimuth spread, delay spread, and shadow fading,” IEEE J. Sel. Areas Commun., vol. 20, no. 3, pp.
523–531, 2002.

[12] K. Bakowski and K. Wesolowski, “Change the channel,” IEEE Veh. Technol. Mag., vol. 6, pp. 82–91,
2011.

[13] S. Szyszkowicz, H. Yanikomeroglu, and J. Thompson, “On the feasibility of wireless shadowing corre-
lation models,” IEEE Trans. Veh. Technol., vol. 59, pp. 4222–4236, 2010.

[14] M. Gudmundson, “Correlation model for shadow fading in mobile radio systems,” IET Electron Lett.,
vol. 27, no. 23, pp. 2145–2146, November 1991.

[15] 3GPP TR 25.996 v10.0.0, “Spatial channel model for multiple input multiple output (MIMO) simula-
tions,” Tech. Rep., 3 2011.

[16] K. Pedersen, P. Mogensen, and B. Fleury, “Power azimuth spectrum in outdoor environments,” Elec-
tronics Letters, vol. 33, no. 18, pp. 1583–1584, 1997.

[17] G. F. Masters and S. F. Gregson, “Coordinate system plotting for antenna measurements,” AMTA
Annual Meeting & Symposium, 2007.

[18] R. C. Jones, “A new calculus for the treatment of optical systems, i. description and discussion of the
calculus,” Journal of the Optical Society of America, vol. 31, pp. 488–493, July 1941.

[19] M. Narandzic, M. Käske, C. Schneider, M. Milojevic, M. Landmann, G. Sommerkorn, and R. Thomä,
“3D-antenna array model for IST-WINNER channel simulations,” Proc. IEEE VTC ’07 Spring, pp.
319–323, 2007.

[20] S. Gregson, J. McCormick, and C. Parini, Principles of Planar Near-Field Antenna Measurements.
IET, 2007.

[21] T. Svantesson, “A physical MIMO radio channel model for multi-element multi-polarized antenna
systems,” Proc. IEEE VTC’ 01 Fall, vol. 2, pp. 1083–1087, 2001.

[22] L. Materum, J. Takada, I. Ida, and Y. Oishi, “Mobile station spatio-temporal multipath clustering of an
estimated wideband MIMO double-directional channel of a small urban 4.5 GHz macrocell,” EURASIP
J. Wireless Commun. Netw., no. 2009:804021, 2009.

[23] F. Quitin, C. Oestges, F. Horlin, and P. De Doncker, “A polarized clustered channel model for indoor
multiantenna systems at 3.6 GHz,” IEEE Trans. Veh. Technol., vol. 59, no. 8, pp. 3685–3693, 2010.

[24] J. Poutanen, K. Haneda, L. Liu, C. Oestges, F. Tufvesson, and P. Vainikainen, “Parameterization of
the COST 2100 MIMO channel model in indoor scenarios,” Proc. EUCAP ’11, pp. 3606–3610, 2011.

[25] Y. Zhou, S. Rondineau, D. Popovic, A. Sayeed, and Z. Popovic, “Virtual channel space-time processing
with dual-polarization discrete lens antenna arrays,” IEEE Trans. Antennas Propag., vol. 53, pp. 2444–
2455, Aug. 2005.

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

9

http://www.quadriga-channel-model.de

QuaDRiGa v1.2.32-458 References

[26] C. Oestges, B. Clerckx, M. Guillaud, and M. Debbah, “Dual-polarized wireless communications: From
propagation models to system performance evaluation,” IEEE Trans. Wireless Commun., vol. 7, no. 10,
pp. 4019–4031, 2008.

[27] M. Hata, “Empirical formula for propagation loss in land mobile radio services,” IEEE Trans. Veh.
Technol., vol. 29, no. 3, pp. 317–325, 1980.

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

10

QuaDRiGa v1.2.32-458 1 INTRODUCTION AND OVERVIEW

1 Introduction and Overview

1.1 Installation and System Requirements

The installation is straightforward and it does not require any changes to your system settings. If you would
like to use QuaDRiGa, just extract the ZIP-File containing the model files and add the “source”-folder from
the extracted archive to you MATLAB-Path. This can be done by opening MATLAB and selecting “File”
- “Set Path ...” from the menu. The you can use the “Add folder ...” button to add QuaDRiGa to your
MATLAB-Path.

Table 1: QuaDRiGa System Requirements

Requirement Value

Minimal required MATLAB version 7.12 (R2011a)
Required toolboxes none
Memory (RAM) requirement 1 GB
Processing power 1 GHz Single Core
Storage 50 MB
Operating System Linux, Windows, Mac OS

1.2 General Remarks

This document gives a detailed overview of the QuaDRiGa channel model and its implementation details. The
model has been evolved from the Wireless World Initiative for New Radio (WINNER) channel model de-
scribed in WINNER II deliverable D1.1.2 v.1.1 [3]. This document covers only the model itself. Measurement
campaigns covering the extraction of suitable parameters can be found in the WINNER documentation [3, 4]
or other publications such as [5, 6]. Furthermore, the MIMOSA project [1] covers the model development
and parameter extraction for land-mobile satellite channels.

The QuaDRiGa channel model follows a geometry-based stochastic channel modeling approach, which allows
the creation of an arbitrary double directional radio channel. The channel model is antenna independent,
i.e. different antenna configurations and different element patterns can be inserted. The channel parame-
ters are determined stochastically, based on statistical distributions extracted from channel measurements.
The distributions are defined for, e.g. delay spread, delay values, angle spread, shadow fading, and cross-
polarization ratio. For each channel segment the channel parameters are calculated from the distributions.
Specific channel realizations are generated by summing contributions of rays with specific channel parame-
ters like delay, power, angle-of-arrival and angle-of- departure. Different scenarios are modeled by using the
same approach, but different parameters. The basic features of the model approach can be summarized as
follows:

• Support of freely configurable network layouts with multiple transmitters and receivers
• Scalability from a single input single output (SISO) or multiple-input multiple-output (MIMO) link

to a multi-link MIMO scenario
• Same modeling approach indoor, outdoor, and satellite environments as well as combinations of them
• Support of a frequency range of 2-6 GHz with up to 100 MHz RF bandwidth
• Support of multi-antenna technologies, polarization, multi-user, multi-cell, and multi-hop networks
• Smooth time evolution of large-scale and small-scale channel parameters including the transition be-

tween different scenarios
• High accuracy for the calculation of the polarization characteristics

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

11

QuaDRiGa v1.2.32-458 1 INTRODUCTION AND OVERVIEW

The QuaDRiGa channel model largely extends the WINNER model to support several new features that were
originally not included. These are

• Time evolution
Short term time evolution of the channel coefficients is realized by updating the delays, the departure-
and arrival angels, the polarization, the shadow fading and the K-Factor based on the position of the
terminal.

• Scenario transitions
When the mobile terminal (MT) moves through the fading channel, it may pass through several
different scenarios. QuaDRiGa supports smooth transitions between adjacent channel segments. This
is used to emulate long term time evolution and allows the simulation of e.g. handover scenarios.

• Variable speeds for mobile terminals
QuaDRiGa supports variable speeds including accelerating and sowing down of mobile terminals.

• Common framework for LOS and NLOS simulations
In WINNER, line of sight (LOS) and non line of sight (NLOS) scenarios were treated differently.
QuaDRiGa used the same method for both scenarios types. This reduces the model complexity and
enables freely configurable multicell scenarios. E.g. one MT can see two BSs, one in LOS and another
in NLOS.

• Geometric polarization
The polarizations for the LOS and for the NLOS case is now calculated based on a ray-geometric
approach.

• Improved method for calculating correlated large-scale parameters (LSPs)
The WINNER model calculates maps of correlated parameter values using filtered random numbers.
QuaDRiGa uses the same method but extends the map generation algorithm to also consider diagonal
movement directions and to create smoother outputs.

• New functions for modifying antenna patterns
Antenna patterns can now be freely rotated in 3D-coordinates while maintaining the polarization
properties.

• New MATLAB implementation
The MATLAB code was completely rewritten. The implementations now fosters object oriented
programming and object handles. This increases the performance significantly and lowers the memory
usage.

1.3 Introduction to QuaDRiGa

QuaDRiGa (QUAsi Deterministic RadIo channel GenerAtor) was developed to enable the modeling of MIMO
radio channels for specific network configurations, such as indoor, satellite or heterogeneous configurations.

Besides being a fully-fledged three dimensional geometry-based stochastic channel model, QuaDRiGa con-
tains a collection of features created in spatial channel model (SCM) and WINNER channel models along
with novel modeling approaches which provide features to enable quasi-deterministic multi-link tracking of
users (receiver) movements in changing environments.

The main features of QuaDRiGa are:

• Three dimensional propagation (antenna modeling, geometric polarization, scattering clusters),
• Continuous time evolution,
• Spatially correlated propagation parameter maps,
• Transitions between varying propagation scenarios

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

12

QuaDRiGa v1.2.32-458 1 INTRODUCTION AND OVERVIEW

The QuaDRiGa approach can be understood as a “statistical ray-tracing model”. Unlike the classical ray
tracing approach, it doesn’t use an exact geometric representation of the environment but distributes the
positions of the scattering clusters (the sources of indirect signals such as buildings or trees) randomly. A
simplified overview of the model is depicted in Figure 2. For each path, the model derives the angle of
departure (the angle between the transmitter and the scattering cluster), the angle of arrival (the angle
between the receiver and the scattering cluster) and the total path length which results in a delay τ of the
signal. For the sake of simplicity, only two paths are shown in the figure.

Transmitter

Receiver

LOS Path

Scatterer

NLOS Path

Φd
LOS

Φd
NLOS

Φa
NLOS

Φa
LOSlength dR0

len
gth d l

Signal
delayτLOS τNLOS

Power

PNLOS

PLOS

Impulse Response

Figure 1: Simplified overview of the modeling approach used in QuaDRiGa

Terrestrial and Satellite scenarios can be modeled. For “Satellite to Earth” communication the angle of
departure is identical for all clusters. The concept behind the model allows also the modeling of scenarios
such as

• Earth to satellite
• Satellite systems with complementary ground components (CGC): Using several transmitters at dif-

ferent positions and simulating all propagation paths in one setup is supported.

The analysis of these scenarios was not in the scope of the MIMO over satellite (MIMOSA) project. This
feature is not tested and especially no parameter sets are available yet.

In the following, the terms cluster, scattering cluster and scatterer are used synonymously. A cluster
describes an area where many scattering events occur simultaneously, e.g. at the foliage of trees or at a
rough building wall. In QuaDRiGa, each scattering cluster is approximated by 20 individual scatterers.
Each one is modeled by a single reflection. The 20 signals can be resolved in spatial domain where they
have a typical angular spread of 1-6°. However, they cannot be resolved in delay domain. Therefore, in
the output of the channel model, these 20 signals (also named sub-paths) are combined into a single signal
which is represented by a path. The difference to Rayleigh fading models, which use wide sense stationary
uncorrelated scattering (WSSUS) taps instead of paths, is that each path has a very limited angular spread
(1-6°) which also results in a narrow Doppler spectrum. The terms path, multipath component (MPC) and
tap are also used synonymously in the QuaDRiGa documentation.

To emulate a rich scatting environment with a wider angular spread, many scattering clusters are created.
QuaDRiGa supports up to 42 clusters. However, depending on the angular spread and the amount of
diffuse scatting (which is approximated by discrete clusters in QuaDRiGa), typical values are around 10
cluster for LOS propagation and 20 clusters for non-LOS. The positioning of the clusters is controlled by the
environment angular spread and the delay spread. The environment angular spread has values of around
20-90° and is typically much larger than the per-cluster angular spread. However, even with many clusters,
the Doppler spread is narrower in QuaDRiGa than when assuming pure Rayleigh fading. This is also in line

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

13

QuaDRiGa v1.2.32-458 1 INTRODUCTION AND OVERVIEW

with measurement results. It can be observed in the field that the main components arrive from selected
angles and the classical Doppler spectrum’s “Jakes” or Butterworth filter shaped characteristics are only
valid as long term average and not valid for a short time interval.

To summarize:

• A typical propagation environment requires 8-20 clusters.
• Internally, each cluster is represented by 20 sub-paths, resulting in 160 - 400 sub-paths in total.
• Each sub-path is modeled as a single reflection.
• The 160 - 400 sub-paths are weighted by the antenna response. The 20 sub-paths for each cluster are

summed up which results in 8-20 paths.
• For a MIMO system with multiple antennas at the transmitter and receiver, each path has as many

channel coefficients, as there are antenna pairs. Hence, at the output, there are nPath ·nRx ·nTx channel
coefficients.

1.4 Continuous time evolution

QuaDRiGa calculates the channel for each defined reception point. To generate a “time series” a continuous
track of reception points can be defined. The arrival angles of the sub-paths play a crucial for the time
evolution because the phase changes are calculated deterministically based on the arrival angles. This results
in a realistic Doppler spectrum.

The temporal evolution of the channel is modeled by two effects:

• drifting and
• birth and death of clusters.

Drifting (see Section 3.4) occurs within a small area (about 20-30 m diameter) in which a specific cluster
can be seen from the MT. Within this area the cluster position is fixed. Due to the mobility of the terminal
the path length (resulting in a path delay) and arrival angels change slowly.

Longer time-evolving channel sequences need to consider the birth and death of scattering clusters as well as
transitions between different propagation environments. We address this by splitting the MT trajectory into
segments. A segment can be seen as an interval in which the LSPs, e.g. the delay and angular spread, do
not change considerably and where the channel keeps its wide-sense stationary (WSS) properties. Thus, the
length of a segment depends on the decorrelation distances of the LSPs. We propose to limit the segment
length to the average decorrelation distance. Typical values are around 20 m for LOS and 45 m for NLOS
propagation. In the case where a state does not change over a long time, adjacent segment must have the
same state. For example, a 200 m NLOS segment should be split into at least 4 NLOS sub-segments.

A set of clusters is generated independently for each segment. However, since the propagation channel does
not change significantly from segment to segment, we need to include correlation. This is done by so called
“parameter maps” (see Section3.1). The maps ensure that neighboring segments do not have significantly
different propagation characteristics. For example, measurements show that the shadow fading (the average
signal attenuation due to building, trees, etc.) is correlated over up to 100 m. Hence, we call all channel
characteristics showing similarly slow changes LSPs.

With a segment length of 20 m, two neighboring segments of the same state will have similar receive-power.
To get the correct correlation, QuaDRiGa calculates a map for the average received power for a large area.
The received power for two adjacent segments is then obtained by reading the values of the map. This
map-based approach also contains cross-correlations to other LSPs such as the delay spread. For example, a
shorter delay spread might result in a higher received power. Hence, there is a positive correlation between
power and delays spread which is also reflected in the maps.

To get a continuous time-series of channel coefficients requires that the paths from different segments are
combined at the output of the model. In between two segments clusters from the old segment disappear

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

14

QuaDRiGa v1.2.32-458 1 INTRODUCTION AND OVERVIEW

and new cluster appear. This is modeled by merging the channel coefficients of adjacent segments. The
active time of a scattering cluster is confined within the combined length of two adjacent segments. The
power of clusters from the old segment is ramped down and the power of new clusters is ramped up within
the overlapping region of the two segments. The combination clusters to ramp up and down is modeled by
a statistical process. Due to this approach, there are no sudden changes in the LSPs. For example, if the
delay spread in the first segment is 400 ns and in the second it is 200 ns, then in the overlapping region,
the delay spread (DS) slowly decreases till it reaches 200 ns. However, this requires a careful setup of the
segments along the used trajectory. If the segments are too short, sudden changes cannot be excluded. This
process is described in detail in Section 3.8.

1.5 QuaDRiGa Program Flow

For a propagation environment (e.g. urban, suburban, rural or tree-shadowing) typical channel characteris-
tics are described by statistics of the LSPs. Those are the median and the standard deviation of the delay
spread, angular spreads, shadow fading, Ricean K-Factor, as well as correlations between them. Additional
parameters describe how fast certain properties of the channel change (i.e. the decorrelation distance).
Those parameters are stored in configuration files which can be edited by the model user. Normally, the
parameters are extracted from channel measurements. A detailed description of the model steps can be
found Section 3.

1. The user of the model needs to configure the network layout. This includes:

• Setting the transmitter position (e.g. the BS positions or the satellite orbital position)
• Defining antenna properties for the transmitter and the receiver
• Defining the user trajectory
• Defining states (or segments) along the user trajectory
• Assigning a propagation environment to each state

Defining the user trajectory, states along the user trajectory and related parameters is performed by
the state sequence generator (SSG). In the current implementation different SSGs are available:

• Manual definition of all parameters by the user, e.g. definition of short tracks.
• Statistical model for the “journey”. A simple model (mainly designed for demonstration and

testing purpose is included in the tutorial “satellite channel”)
• Derive trajectory and state sequence from the measurement data.

2. Configuration files define the statistical properties of the LSPs. For each state (also called scenario) a
set of properties is provided. Typically two configurations files are used.

• One for the “good state” (also called LOS scenario)
• The other for the “bad state” (NLOS scenario).

For each state QuaDRiGa generates correlated “maps” for each LSP. For example, the delay spread in
the file is defined as log-normal distributed with a range from 40 to 400 ns. QuaDRiGa translates this
distribution in to a series of discrete values, e.g. 307 ns for segment 1, 152 ns for segment 2, 233 ns
for segment 3 and so on. This is done for all LSPs.

3. The trajectory describes the position of the MT in the “maps”. For each segment of the trajectory,
clusters are calculated according to the values of the LSPs at the map position. The cluster positions
are random within the limits given by the LSP. For example, a delay spread of 152 ns limits the
distance between the clusters and the terminal.

4. Each cluster is split into 20 sub-paths and the arrival angles are calculated for each sub-path and for
each positions of the terminal on the trajectory.

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

15

QuaDRiGa v1.2.32-458 1 INTRODUCTION AND OVERVIEW

5. The antenna response for each of the arrival angels is calculated (the same holds for the departure
angles). If there is more than one antenna at the transmitter- and/or receiver side, the calculation is
repeated for each antenna.

6. The phases are calculated based on the position of the terminal antennas in relation to the clusters.
The terminal trajectory defines how the phases change. This results in the Doppler spread.

7. The coefficients of the 20 sup-paths are summed (the output are paths). If there is more than one
antenna and depending on the phase, this sum results in a different received power for each antenna-
pair. At this point, the MIMO channel response is created.

8. The channel coefficients of adjacent segments are combined (merged). This includes the birth/death
process of clusters. Additionally, different speeds of the terminal can be emulated by interpolation of
the channel coefficients.

9. The channel coefficients together with the path delays are formatted and returned to the user for
further analysis.

1.6 Description of modeling of different reception conditions by means of a typical drive
course

This section describes some of the Key features of the model using a real world example. A detailed
introduction with a variety of tutorials, test cases and interface descriptions then follows in section A.
The later part of the document then focusses on the mathematical models behind the software and the
assumptions made.

Figure 2: Typical driving course: From home to woodland parking site on the village outskirts

The different effects along the track can be summarized as follows:

1. Start Environment: Urban, LOS reception of satellite signal
2. LOS → NLOS Change
3. NLOS → LOS Change
4. Turning off without change in reception condition (LOS)
5. Stopping at traffic light (LOS)
6. Turning off with change of reception condition (LOS → NLOS)
7. Crossing side Street (NLOS → short LOS → NLOS)

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

16

QuaDRiGa v1.2.32-458 1 INTRODUCTION AND OVERVIEW

8. Structural change in the environment without a change in the environment type (higher density of
buildings but still the environment remains urban)

9. Stopping at traffic lights (NLOS)
10. Houses have the same characteristics as before but are further away from the street (urban environment

with different reception characteristics)
11. Change of environment (Urban → Forest)
12. Turning off without change of environment (NLOS)

Each simulation run in QuaDRiGa is done in three (and an optional fourth) step.

1. Set up tracks, scenarios, antennas and network layout
2. Generate correlated LSPs
3. Calculate the channel coefficients
4. (optional) Post-processing

Those steps also need to be done for the above scenario. However, different aspects of the track are handled
in different parts of the model. Additionally, the QuaDRiGa model supports two operating modes for
handling the LSPs:

1. The first (default) mode generates the correlated LSPs automatically based on a scenario-specific
parameter set. This is done in step 2 and involves so called parameter maps.

2. The manual mode does not generate LSPs automatically. Here, the user has to supply a list of
parameters to the model. The step 2 thus to be implemented by the user.

Steps 1, 3 and 4 are identical for both modes. The following list describes the modeling of the observed
effects along the track when using the automatic mode (1).

1. Start Environment: Urban, LOS reception of satellite signal
Each segment along the track gets assigned an environment. In the QuaDRiGa terminology, this is
called a scenario. E.g. the first segment on the track is in the ”Satellite-LOS-Urban”-scenario. The
selection of the scenario is done during the first step (set up tracks, scenarios, antennas and network
layout). QuaDRiGa itself does not supply functions to perform the setting up of tracks and scenarios
automatically. However, external scripts can be used to perform this task. An example can be found
in section A.3. A RHCP/LHCP signal is defined in the antenna setup.

After the model setup, the ”automatic mode” generates a set of LSPs for this segment. I.e. the second
step of the model calculates one value for each of the 7 LSPs using the map-based method. Thus,
a set of seven maps is created for the scenario ”Satellite-LOS-Urban”. Those maps cover the entire
track. Thus, the same maps are used for all ”Satellite-LOS-Urban”-segments of the track.

The third step then calculates a time-series of fading coefficients for the first segment that have the
properties of the LSPs from the map. E.g. if one calculates the RMS-DS from the coefficients, one
gets the same value as generated by the map in step 2.

2. LOS → NLOS Change
A scenario change is defined along the track. E.g. the second segment along the track gets assigned
the scenario ”Satellite-NLOS-Urban”. Now, a second set of maps is generated for all ”Satellite-NLOS-
Urban”-segments. So in total, we now have 14 maps (seven for LOS and another seven for NLOS).
The parameters for calculating the channel coefficients are drawn from the second seven maps.

We get a set of channel coefficients with different properties (e.g. more multipath components, lower
K-Factor etc.). A smooth transition between the coefficients from the first segment and the second is
realized by the ramping down the powers of the clusters of the old segment and ramping up the power
of the new. This is implemented in step 4 (Post-processing).

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

17

QuaDRiGa v1.2.32-458 1 INTRODUCTION AND OVERVIEW

3. NLOS → LOS Change
This is essentially the same as in point 2. However, since the third segment is also in the scenario
”Satellite-LOS-Urban”, no new maps are generated. The parameters are extracted from the same map
as for the starting segment.

4. Turning off without change in reception condition (LOS)
QuaDRiGa supports free 3D-trajectories for the receiver. Thus, no new segment is needed - the
terminal stays in the same segment as in point 3. However, we assume that the receive antenna is
fixed to the terminal. Thus, if the car turns around, so does the antenna. Hence, the arrival angles
of all clusters, including the direct path, change. This is modeled by a time-continuous update of the
angles, delays and phases of each multipath component, also known as drifting. Due the change of the
arrival angles and the path-lengths, the terminal will also see a change in its Doppler-profile.

5. Stopping at traffic light (LOS)
QuaDRiGa performs all internal calculations at a constant speed. However, a stop of the car at a
traffic light is realized by interpolating the channel coefficients in an additional post processing step
(step 4). Here, the user needs to supply a movement profile that defines all acceleration, deceleration
or stopping points along the track. An example is given in section A.6. Since the interpolation is an
independent step, it makes no difference if the mobile terminal is in LOS or NLOS conditions.

6. Turning off with change of reception condition (LOS → NLOS)
This is realized by combining the methods of point 2 (scenario change) and point 4 (turning without
change). The scenario change is directly in the curve. Thus, the LOS and the NLOS segments have
an overlapping part where the cluster powers of the LOS segment ramp down and the NLOS clusters
ramp up. The update of the angles, delays and phases is done for both segments in parallel.

7. Crossing side Street (NLOS → short LOS → NLOS)
This is modeled by two successive scenario changes (NLOS-LOS and LOS-NLOS). For both changes,
a new set of clusters is generated. However, since the parameters for the two NLOS-segments are
extracted from the same map, they will be highly correlated. Thus, the two NLOS segments will have
similar properties.

8. Structural change in the environment without a change in the environment type (higher
density of buildings but still the environment remains urban)
This is not explicitly modeled. However, the ”Satellite-NLOS-Urban”-map covers a typical range of
parameters. E.g. in a light NLOS area, the received power can be some dB higher compared to an
area with denser buildings. The placement of light/dense areas on the map is random. Thus, different
characteristics of the same scenario are modeled implicit. They are covered by the model, but the
user has no influence on where specific characteristics occur on the map when using the automatic
mode. An alternative would be to manually overwrite the automatically generated parameters or use
the manual mode.

In order to update the LSPs and use a new set of parameters, a new segment needs to be created.
I.e. here, an environment change from ”Satellite-NLOS-Urban” to the same ”Satellite-NLOS-Urban”
has to be created. Thus, a new set of LSPs is read from the map and new clusters are generated
accordingly.

9. Stopping at traffic lights (NLOS)
This is the same as in point 5.

10. Structural change in environment. Houses have the same characteristics as before but are further
away from the street (urban environment with different reception characteristics)
Same as point 8.

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

18

QuaDRiGa v1.2.32-458 1 INTRODUCTION AND OVERVIEW

11. Change of environment (Urban → Forest)
This is the same as in point 2. The segment on the track gets assigned the scenario ”Satellite-Forest”
and a third set of maps (15-21) is generated for the ”Satellite-Forest”-segment. The parameters are
drawn from those maps, new channel coefficients are calculated and the powers of the clusters are
ramped up/down.

12. Turning off without change of environment (NLOS)
Same as in point 4.

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

19

QuaDRiGa v1.2.32-458 2 SOFTWARE STRUCTURE

2 Software Structure

2.1 Overview

QuaDRiGa is implemented in MATLAB using an object oriented framework. The user interface is built
upon classes which can be manipulated by the user. Each class contains fields to store data and methods
to manipulate the data. An overview of the class structure is given in Section 2.

It is important to keep in mind that all classes in QuaDRiGa are “handle”-classes. This significantly reduces
memory usage and speeds up the calculations. However, all MATLAB variable names assigned to
QuaDRiGa objects are pointers. If you copy a variable (i.e. by assigning “b = a”), only the pointer is
copied. “a” and “b” point to the same object in memory. If you change the values of “b”, the value of “a”
is changed as well. This is somewhat different to the typical MATLAB behavior and might cause errors if
not considered properly. Copying a QuaDRiGa object can be done by “b = a.copy”.

• User input
The user inputs (Point 1 in the programm flow) are provided through the classes:
“simulation parameters”, “array”, “track”, and “layout”.

“simulation parameters” defines the general settings such as the center frequency and the sample
density. It also enables and disables certain features of the model such as polarization rotation, sub-
path output and progress bars.

“array” combines all functions needed to describe antenna arrays.

“track” is used to define user trajectories, states and segments.

“layout” is a object including the tracks and antenna properties together with further parameters
such as the satellite position.

• Internal processing
All the processing is done by the classes “parameter set” and “channel builder”.

“parameter set” is responsible for generating LSPs for the cluster generation. It also holds the
parameter maps needed for generating auto- and crosscorrelation properties of the parameters. “pa-
rameter set” implements point 2 of the program flow.

“channel builder” creates the channel coefficients. This includes the cluster generation and the
MIMO channels. It implements steps 3-7 of the program flow.

• Model output
The final two steps (8 and 9) of the program flow are implemented in the class “channel”. Objects
of this class hold the data for the channel coefficients. The class also implements the channel merger,
which creates long time evolving sequences out if the snipes produced by the channel builder. Addi-
tional function such as the transformation into frequency domain can help the user to further process
the data.

An overview of the model software is depicted in Fig. 3. The unified modeling language (UML) class diagram
of the QuaDRiGa channel model gives an overview of all the classes, methods and properties of the model.
The class diagram serves as a reference for the following descriptions which also lists the methods that
implement a specific functionality.

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

20

QuaDRiGa v1.2.32-458 2 SOFTWARE STRUCTURE

<<control>>

channel_builder
+name
+par
+taus
+pow
+AoD
+AoA
+EoD
+EoA
+xpr
+pin
+kappa
+random_pol
+subpath_coupling

+calc_scatter_positions()
+get_channels()
+get_los_channels()
+init_parameters()
+visualize_clusters()

<<input>>

array
+name
+interpolation_method
+polarization_basis
+iscompressed
+no_elements
+elevation_grid
+azimuth_grid
+element_position
+Fa
+Fb
+Fc
+coupling
#no_az
#no_el

+append_array()
+calc_gain()
+change_pol_basis()
+combine_pattern()
+compress()
+copy_element()
+copy_objects()
+generate()
+generate_multi()
+import_pattern()
+interpolate()
+normalize_gain()
+rotate_pattern()
+set_grid()
+sub_array()
+supported_pol_basis()
+uncompress()
+visualize()

<<control>>

parameter_set
+name
+simpar
+tx_array
+rx_array
+rx_track
+scenario
+scenpar
+plpar
+no_positions
+positions
+tx_position
+ds
+kf
+sf
+asD
+asA
+esD
+esA
+xpr
+ds_map
+kf_map
+sf_map
+asD_map
+asA_map
+esD_map
+esA_map
+map_extension
+map_extent
+map_size
+samples_per_meter
+map_valid
#LSP_xcorr_matrix
#LSP_matrix_isOK
#map_x_coord
#map_y_coord

+copy_objects()
+get_angles()
+get_channels()
+get_distances()
+get_pl()
+get_sf_profile()
+set_par()
+supported_scenarios(): static
+update_parameters()

<<output>>

channel
+name
+version
+individual_delays
+coeff
+delay
+initial_position
+tx_position
+rx_position
#no_rx
#no_tx
#no_path
#no_snap

+fr()
+interpolate()
+merge()
+split_tx()

merges with

<<input>>

simulation_parameters
+sample_density
+samples_per_meter
+drifting_precision
+use_polarization_rotation
+use_absolute_delays
+use_angular_mapping
+use_map_algorithm
+show_progress_bars
+center_frequency
+map_resolution
#version
#speed_of_light
#wavelength

+set_speed()

<<input>>

track
+name
+initial_position
+no_snapshots
+positions
+movement_profile
+no_segments
+segment_index
+scenario
+par
+ground_direction
+height_direction
#closed

+compute_directions()
+copy_objects()
+correct_overlap()
+generate()
+generate_parameters()
+get_length()
+get_subtrack()
+interpolate_movement()
+interpolate_positions()
+set_scenario()
+set_speed()
+split_segment()
+visualize()

<<input>>

layout
+name
+simpar
+no_tx
+no_rx
+tx_name
+tx_position
+tx_array
+rx_name
+rx_position
+rx_array
+track
+pairing
#no_links

+create_parameter_sets()
+estimate_memory_usage()
+generate()
+generate_parameters()
+get_channels()
+get_channels_seg()
+power_map()
+randomize_rx_positions()
+set_pairing()
+set_satallite_pos()
+visualize()

creates

1

1

1...*

1

1...*

1

creates

1...*

1Implements the state merger
and the functions
to interpolate a specific speed profile

Implements the correlation method
for LSPs

Figure 3: UML class diagram of the model software.

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

21

QuaDRiGa v1.2.32-458 2 SOFTWARE STRUCTURE

2.2 Description of Classes, Properties, and Methods

In the following, all properties and methods of the QuaDRiGa classes are described. For the methods,
input and output variables are defined and explained. There are three types of methods: Standard methods
require an instance of a class. They are printed in black without the class name:

par = generate parameters (overlap, usage, check parfiles, verbose)

Static methods can be called directly from the command line without creating an instance of the class first.
They are printed in blue:

[h array, mse, mse pat] = array.import pattern (fVi, fHi , correct phase, accuracy,
max num elements, azimuth grid, elevation grid, verbose)

The constructor is a special method that is called when the class name is used as a function, e.g. when
calling a = array(’dipole’). There is only one constructor for each class. They are printed in blue.

h array = array (array type, phi 3dB, theta 3dB, rear gain)

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

22

QuaDRiGa v1.2.32-458 2 SOFTWARE STRUCTURE

2.2.1 Class “simulation parameters”

This class controls the simulation options and calculates constants for other classes.

Properties

sample density The number of samples per half-wave length
Sampling density describes the number of samples per half-wave length. To fulfill the sampling the-
orem, the minimum sample density must be 2. For smaller values, interpolation of the channel for
variable speed is not possible. On the other hand, high values significantly increase the computing
time significantly. A good value is around 4.

samples per meter Samples per meter
This parameter is linked to the sample density by

fS = 2 · fC ·
SD

c

where fC is the carrier frequency in Hz, SD is the sample density and c is the speed of light.

drifting precision Precision of the drifting functionality

drifting precision = 0
This method applies rotating phasors to each path which emulates time varying Doppler characteris-
tics. However, the large-scale parameters (departure and arrival angles, shadow fading, delays, etc.)
are not updated in this case. This mode requires the least computing resources and may be preferred
when only short linear tracks (up to several cm) are considered and the distance between transmitter
and receiver is large. The phases at the antenna arrays are calculated by a planar wave approximation.

drifting precision = 1 (default)
When drifting is enabled, all arrival angles, the LOS departure angle, delays, and phases are updated
for each snapshot using a single-bounce model. This requires significantly more computing resources
but also increases the accuracy of the results. Drifting is required when non-linear tracks are generated
or the distance between transmitter and receiver is small (below 20 m). The phases at the antenna
arrays are calculated by a planar wave approximation.

drifting precision = 2
The arrival angles, the LOS departure angle, delays, and phases are updated for each snapshot and for
each antenna element at the receiver (spherical wave assumption). The phases at the transmitter are
calculated by a planar wave approximation. This increases the accuracy for multi-element antenna
arrays at the receiver. However, the computational complexity increases as well.

drifting precision = 3 [EXPERIMENTAL]
This option also calculates the shadow fading, path loss and K-factor for each antenna element at the
receiver separately. This feature tends to predict higher MIMO capacities since is also increases the
randomness of the power for different MIMO elements.

drifting precision = 4
This option uses spherical waves at both ends, the transmitter and the receiver. This method assumes
a single-bounce model and no mapping of departure and arrival angles is done. Hence, departure
angular spreads are effectively ignored and results might be erroneous.

drifting precision = 5
This option uses spherical waves at both ends, the transmitter and the receiver. This method uses a
multi-bounce model where the departure and arrival angels are matched such that the angular spreads
stay consistent.

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

23

QuaDRiGa v1.2.32-458 2 SOFTWARE STRUCTURE

use polarization
rotation

Select the polarization rotation method

use polarization rotation = 0
Uses the polarization method from WINNER. No polarization rotation is calculated.

use polarization rotation = 1
Uses the new polarization rotation method where the cross polarization ratio (XPR) is modeled by a
rotation matrix. No change of circular polarization is assumed.

use polarization rotation = 2 (default)
Uses the polarization rotation with an additional phase offset between the H and V component of the
NLOS paths. The offset angle is calculated to match the XPR for circular polarization.

use polarization rotation = 3
Uses polarization rotation for the geometric polarization but models the NLOS polarization change
as in WINNER.

use absolute delays Returns absolute delays in channel impulse response (CIR).
By default, delays are calculated such that the LOS delay is normalized to 0. By setting
’use absolute delays’ to 1 or ’true’, the absolute path delays are included in ’channel.delays’
at the output of the model.

use angular
mapping

Selects the angular mapping method

use angular mapping = 1
Maps the path powers to arrival angles by a wrapped Gaussian distribution. This method is adopted
from the WINNER model. However, the generated angles show high correlations if the K-Factor is
larger than 0 dB.

use angular mapping = 2 (default)
This method generates random angles for the paths. The angular spread is maintained by a scaling
operation. The output angles have a more natural distribution. However, there is an upper limit for
the angular spread of roughly 100 degree in NLOS conditions.

use map algorithm Selects the parameter map generation algorithm

use map algorithm = 1
Uses the algorithm from the WINNER model.

use map algorithm = 2 [Default]
Uses a modified version of the WINNER algorithm that also filters the diagonal directions.

show progress bars Show a progress bar on the MATLAB prompt
center frequency Center frequency in [Hz]
map resolution Resolution of the decorrelation maps in [samples/m]
version Version number of the current QuaDRiGa release (constant)
speed of light Speed of light (constant)
wavelength Carrier wavelength in [m] (read only)

Methods

h simpar = simulation parameters

Description Creates a new ’simulation parameters’ object with default settings.

set speed (speed kmh, sampling rate s)

Description This method can be used to automatically calculate the sample density for a given mobile speed.

Input speed kmh speed in [km/h]
sampling rate s channel update rate in [s]

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

24

QuaDRiGa v1.2.32-458 2 SOFTWARE STRUCTURE

2.2.2 Class “array”

This class combines all functions to create and edit antenna arrays. An antenna array is a set of single
antenna elements, each having a specific beam pattern, that can be combined in any geometric arrangement.
A set of synthetic arrays that allow simulations without providing your own antenna patterns is provided
(see generate method for more details).

Properties

name Name of the antenna array

interpolation
method

Method for interpolating the beam patterns
The default is linear interpolation. Optional are:

• nearest - Nearest neighbor interpolation (QuaDRiGa optimized)
• linear - Linear interpolation (QuaDRiGa optimized, Default)
• spline - Cubic spline interpolation (MATLAB internal function)
• nearest int - Nearest neighbor interpolation (MATLAB internal function)
• linear int - Linear interpolation (MATLAB internal function)

Note: MATLAB internal routines slow down the simulations significantly.

polarization basis The polarization basis of the pattern
The polarization basis of the pattern:

• cartesian - Ludwig 1
• az-el - Ludwig 2 - Azimuth over Elevation
• el-az - Ludwig 2 - Elevation over Azimuth
• polar-spheric - Ludwig 2 - Polar-Spheric [DEFAULT]

You can specify the polarization basis of the pattern by setting the appropriate string. By default,
QuaDRiGa requires a Polar-Spheric basis. If a different basis is specified, an appropriate transforma-
tion will be carried out.

no elements Number of antenna elements in the array
Increasing the number of elements creates new elements which are initialized as copies of the first
element. Decreasing the number of elements deletes the last elements from the array.

elevation grid Elevation angles in [rad] were samples of the field patterns are provided
The field patterns are given in spherical coordinates. This variable provides the elevation sampling
angles in radians ranging from −π

2
(downwards) to π

2
(upwards).

azimuth grid Azimuth angles in [rad] were samples of the field patterns are provided
The field patterns are given in spherical coordinates. This variable provides the azimuth sampling
angles in radians ranging from −π to π.

element position Position of the antenna elements in local cartesian coordinates (using units of [m])

Fa The first component of the antenna pattern. If the polar-spheric polarization basis is used, this variable
contains the vertical (or theta) component of the electric field given in spherical coordinates.
This variable is a tensor with dimensions [elevation, azimuth, element] describing the theta component
of the far field of each antenna element in the array.

Fb The second component of the antenna pattern. If the polar-spheric polarization basis is used, this
variable contains the horizontal (or phi) component of the electric field given in spherical coordinates.
This variable is a tensor with dimensions [elevation, azimuth, element] describing the phi component
of the far field of each antenna element in the array.

Fc The third component of the antenna pattern. Currently, it is only used when the antenna pattern is
using a cartesian polarization basis.

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

25

QuaDRiGa v1.2.32-458 2 SOFTWARE STRUCTURE

coupling Coupling matrix between elements
This matrix describes a pre or postprocessing of the signals that are fed to the antenna elements. For
example, in order to transmit a left hand circular polarized (LHCP) signal, two antenna elements are
needed. They are then coupled by a matrix

1√
2

(
1
j

)
The rows in the matrix correspond to the antenna elements, the columns to the signal ports. In this
example, the antenna has one port, i.e. it is fed with one input signal. This signal is then split into
two and fed to the two antenna elements where the second element radiates the signal with 90° phase
shift.

In a similiar fasion, it is possible to create fixed beamforming antennas and include crosstalk between
antenna elements. By default, ’coupling’ is set to an identity matrix which indicates perfect isolation
between the antenna elements.

iscompressed Indicates if the array is compressed
It is possible to compress the antenna array in memory to save storage space and relay the memory
requirements for large arrays. This property indicates it the array is compressed.

no az Number of azimuth values

no el Number of elevation values

Methods

h array = array (array type, phi 3dB, theta 3dB, rear gain)

Description Creates a new array object.
See ’array.generate’ for a description of the input parameters and the list of supported antenna types.

append array (a)

Description Appends an antenna array to the existing one
This method append the antenna array given in ”a” to the existing array object. If the polarization
basis or the sampling grid do not match, appropriate conversations or interpolations are performed.

Input a The array object which is appended to the current array object.

[gain dBi, pow max] = calc gain (element)

Description Calculates the gain of the antenna array.

Output gain dBi Normalized Gain of the antenna
pow max Maximum power in main beam direction

change pol basis (new basis)

Description This method can be used to change the polarization basis of an antenna pattern. By default, QuaDRiGa
uses the polar-spheric basis. However, the antenna patterns can be given in other bases as well.

Input new basis The basis in which the pattern should be transformed. A list of supported bases
can be obtained by “array.supported pol basis”.

combine pattern (center frequency)

Description Calculates a virtual pattern of the given array
When the inputs of an array are coupled (i.e. fed with the same signal), then it is possible to combine the
elements of the array. This function calculates the virtual pattern by using the QuaDRiGa simulator.

Input center frequency The center frequency in [Hz].

ratio = compress

Description Stores the array in compressed form
If there are many similar elements in an array, the memory and storage requirements might be high.
Therefore, it is possible to compress the array to save storage space. This is done as follows:

• Patterns are stored in ploar-spheris polarization basis
• If multiple elements have the same patterns, the pattern is stored only once.
• Patterns are stored in single precision.
• If there are complex valued patterns with no imaginary part, they are converted to real values.

It is recommended to call ”compress” before saving an array to disk. Decompressing is done automat-
ically when needed.

Output ratio The compression factor in percent

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

26

QuaDRiGa v1.2.32-458 2 SOFTWARE STRUCTURE

copy element (source, target)

Description Creates a copy of an antenna element.

Input source Index of the array object that should be copied. The value must be scalar, integer
and greater than 0 and it can not exceed the array size.

target Target can be a scalar or vector with elements > 0.

copy objects

Description A modified version of the standard physical copy function

While the standard copy command creates new physical objects for each element of obj (in case obj is
an array of object handles), copy objects checks whether there are object handles pointing to the same
object and keeps this information.

par = generate (array type, element, Ain, Bin, Cin, Din)

Description Generates predefined arrays.

Array Types omni An isotropic radiator with vertical polarization.
dipole A short dipole radiating with vertical polarization.
half-wave-dipole A half-wave dipole radiating with vertical polarization.
patch A vertically polarized ideal patch antenna with 90° opening in azimuth and eleva-

tion.
custom An antenna with a custom gain in elevation and azimuth. E.g.:

’a.generate(’custom’,1,90,90,0.1)’ creates an array with 90° opening in az-
imuth and elevation and 0.1 rear gain.

parametric An antenna following the function

F = A ·
√
B + (1−B) · (cos θ)C · exp(−D · φ2)

xpol Two elements with ideal isotropic patterns (vertical polarization). The second
element is tilted by 90°.

rhcp-dipole Two crossed dipoles with one port. The signal on the second element (horizontal)
is shifted by -90° out of phase. The two elements thus create a right hand circular
polarized (RHCP) signal.

lhcp-dipole Two crossed dipoles with one port. The signal on the second element (horizontal)
is shifted by 90° out of phase. The two elements thus create a left hand circular
polarized (LHCP) signal.

lhcp-rhcp-dipole Two crossed dipoles. For input port 1, the signal on the second element is shifted
by +90° out of phase. For input port 2, the the signal on the second element is
shifted by -90° out of phase. Port 1 thus transmits a LHCP signal and port 2
transmits a RHCP signal.

ula2 Unified linear arrays composed of 2 omni-antennas (vertical polarization) with 10
cm element distance.

ula4 Unified linear arrays composed of 4 omni-antennas (vertical polarization) with 10
cm element distance.

ula8 Unified linear arrays composed of 8 omni-antennas (vertical polarization) with 10
cm element distance.

Input array type One of the above array types.
element The element numbers for which this functions is applied. If no element number is

given, the function creates a new array and delete the old elements in the array.
Ain a: The parameter A for the ’parametric’ array type

b: The 3dB beam width in azimuth direction for the ’custom’ array type
Bin a: The parameter B for the ’parametric’ array type

b: The 3dB beam width in elevation direction for the ’custom’ array type
Cin a: The parameter C for the ’parametric’ array type

b: The isotropic gain (linear scale) at the back of the antenna for the ’custom’
array type

Din The parameter D for the ’parametric’ array type

Output par The parameters A, B, C, and D for the ”parametric” antenna type.

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

27

QuaDRiGa v1.2.32-458 2 SOFTWARE STRUCTURE

coupling = generate multi (no elements, spacing, tilt, optimize)

Description Generates a multi-element array with electric tilt

This function generates a vertically stacked multi-element array of the given antenna object. The
element spacing is relative to the wavelength and an additional electric tilt can be applied. The output
is stored in the current antenna object.

For this method to work, you need to define a single antenna element using ”array.generate”. Then,
you can call ”array.generate multi” to transform this element into a stacked multi-element array. The
provided antenna object can only have one element. The method returns an error if a multi-element
array is given.

Input no elements The number of ”virtual” antenna elements stacked in elevation (z) direction.
spacing The element-spacing as a factor of the wavelength. Default value: 0.5
tilt An additional electric downtilt value in [deg]. Default value: 0
optimize If this parameter is set to 1, the optimal beamformer is calculated. Otherwise, the

phases are calculated using geometric settings. Default: 0 (geometric)

Output coupling The coupling matrix used to calculate the virtual antenna pattern.

h array = import pattern (fVi, fHi , azimuth grid , elevation grid)

Description Converts antenna field patterns into a QuaDRiGa array object.

Input fVi The field pattern(s) for the vertical polarization given in spherical coordinates. The
first dimension corresponds to the elevation angle (ranging from -90 to 90 degrees).
The second dimension is for the azimuth angle (ranging from -180 to 180 degrees).
The third dimension belongs to the element number. The default resolution is 1
degree - hence, the default size of fVi is ¡181x361x1¿. If a different resolution is
given, the optional variables ”azimuth grid” and ”elevation grid” must be defined.

fHi The field pattern(s) for the horizontal polarization given in spherical coordinates.
”fHi” can be empty if no horizontal response is given. If it is given, then ”fHi”
must have the same size as ”fVi”.

azimuth grid A vector specifying the azimuth sampling points of the patterns in units of radians
(raging from -pi to pi). This value only needs to be defined if the patterns do not
have the default size.

elevation grid A vector specifying the elevation sampling points of the patterns in units of radians
(raging from -pi/2 to pi/2). This value only needs to be defined if the patterns do
not have the default size.

Output h array The QuaDRiGa antenna array object generated from the field patterns.

gain dBi = normalize gain (element)

Description Normalizes all patterns to their gain.

Input element A list of elements for which the normalization is done. Default: All elements.

Output gain dBi Normalized gain of the antenna

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

28

QuaDRiGa v1.2.32-458 2 SOFTWARE STRUCTURE

[V, H, CP, dist] = interpolate (azimuth, elevation, element)

Description Interpolates the field pattern

Note: Interpolation of the beam patterns is very computing intensive. It must be performed several
thousands of times during a simulation run. It is highly recommended to use linear interpolation for
this task since this method is optimized for speed. Spline interpolation calls the MATLAB internal
interpolation function which is more than 10 times slower. To enable linear interpolation, set the
’interpolation method’ property of the array object to ’linear’.

Remark: There are additional input parameters specified in the .mat-File that are not in the list below.
Those parameters correspond to the properties of the ’array’ class. Passing those variables during the
function call takes less time than reading them from the object properties. This is used internally in
’channel builder.get channels’ but is irrelevant here.

Input azimuth A vector of azimuth angles in [rad].
elevation A vector of elevation angles in [rad].
element The element numbers for which this interpolation is done is applied. If no element

number is given, the interpolation is done for all elements in the array.

Output V The interpolated vertical field pattern.
H The interpolated horizontal field pattern.
CP The interpolated common phase field pattern.
dist The effective distances between the antenna elements when seen from the direction

of the incident path. The distance is calculated by an projection of the array
positions on the normale plane of the incident path.

cp = rotate pattern (deg, rotaxis, element, usage)

Description Rotates antenna patterns

Pattern rotation provides the option to assemble antenna arrays out of single elements. By setting the
’element position’ property of an array object, elements can be placed at different coordinates. In
order to freely design arbitrary array configurations, however, elements often need to be rotated (e.g.
to assemble a +/- 45° crosspolarized array out of single dipoles). This functionality is provided here.

Note: Calling ’rotate pattern’ will always remove the common phase from the field patterns. Call
’estimate common phase’ before calling ’rotate pattern’ to extract the common phase information.

Input deg The rotation angle in [degrees] ranging from -180° to 180°.
rotaxis The rotation axis specified by the character ’x’,’y’, or ’z’.

element The element numbers for which this interpolation is done is applied. If no element
number is given, the interpolation is done for all elements in the array.

usage The optional parameter ’usage’ can limit the rotation procedure either to the
pattern or polarization. Possible values are:

• 0: Rotate both (pattern+polarization) - default
• 1: Rotate only pattern
• 2: Rotate only polarization

Output cp The common phase of the field pattern.

set grid (azimuth grid, elevation grid)

Description Sets a new grid for azimuth and elevation and interpolates the pattern

This function replaces the properties ’azimuth grid’ and ’elevation grid’ of the antenna object with
the given values and interpolates the antenna patterns to the new grid.

Input azimuth grid Azimuth angles in [rad] were samples of the field patterns are provided
The field patterns are given in spherical coordinates. This variable provides the
azimuth sampling angles in radians ranging from −π to π.

elevation grid Elevation angles in [rad] were samples of the field patterns are provided
The field patterns are given in spherical coordinates. This variable provides the
elevation sampling angles in radians ranging from−π

2
(downwards) to π

2
(upwards).

sub array (mask)

Description generates a sub-array with the given array indices
This function creats a copy of the given array with only the selected elements specified in mask.

Input mask A list of element indices.

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

29

QuaDRiGa v1.2.32-458 2 SOFTWARE STRUCTURE

uncompress

Description Uncompresses an array.
See: array.compress

visualize (element)

Description Create a plot showing the element configurations.

Input element The element numbers for which the plot os created. If no element number(s) are
given, a plot is created for each element in the array.

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

30

QuaDRiGa v1.2.32-458 2 SOFTWARE STRUCTURE

2.2.3 Class “track”

One feature of the channel model is the continuous evolution of wireless channels when the terminal moves
through the environment. A track describes the movement of a mobile terminal. It is composed of an
ordered list of positions. During the simulation, one snapshot is generated for each position on the track.

Along the track, wireless reception conditions may change, e.g. when moving from an area with LOS to a
shaded area. This behavior is described by segments, or states. A segment is a subset of positions that have
similar reception conditions. Each segment is classified by a segment index (i.e. the center position of the
segment) and a scenario. The scenario must be one of the supported scenarios in class ’parameter set’.

Properties

name Name of the track

initial position Position offset (will be added to positions)
This position is given in global cartesian coordinates (x,y, and z-component) in units of [m]. The
initial position normally refers to the starting point of the track. If the track has only one segment,
it is also the position for which the LSPs are calculated. The initial position is added to the values in
the positions variable.

no snapshots Number of positions on the track

positions Ordered list of position relative to the initial position
QuaDRiGa calculates an instantaneous channel impulse response (also called snapshot) for each po-
sition on the track.

movement profile Time (in sec) vs. distance (in m) for speed profile
QuaDRiGa supports variable terminal speeds. This is realized by interpolating the channel coefficients
at the output of the model. The variable ’track.movement profile’ describes the movement along
the track by associating a time-point with a distance-point on the track. An example is:

1 t.movement_profile = [0,7 ; 5,0 ; 6,0 ; 20,20]’;

2 dist = t.interpolate_movement(1e-3);

3 ci = cn.interpolate(dist , t.get_length);

See also the tutorial “Applying Varying Speeds (Channel Interpolation)” in Section A.6 for more
details.

no segments Number of segments or states along the track

segment index Starting point of each segment given as index in the ’positions’ vector

scenario Scenarios for each segment along the track
This variable contains the scenario names for each segment as a cell array of strings. A list of
supported scenarios can be obtained by calling ’parameter set.supported scenarios’. If there is
only one transmitter (i.e. one base station), the cell array has the dimension [1 x no segments]. For
multiple transmitters, the rows of the array may contain different scenarios for each transmitter. For
example, in a multicell setup with three terrestrial base stations, the propagation conditions may be
different to all BSs. The cell arrays than has the dimension [3 x no segments].

par Manual parameter settings
This variable contains a structure with LSPs. This can be used for assigning LSPs directly to the
channel builder, e.g. when they are obtained from measurements. The structure contains the following
fields:

• ds - The delay spread in [s] per segment
• kf - The Ricean K-Factor in [dB] per snapshot
• pg - The effective path gain in [dB] excluding antenna gains per snapshot
• asD - The azimuth angle spread in [deg] per segment at the transmitter
• asA - The azimuth angle spread in [deg] per segment at the receiver
• esD - The elevation angle spread in [deg] per segment at the transmitter
• esA - The elevation angle spread in [deg] per segment at the receiver
• xpr - The NLOS cross-polarization in [dB] per segment

If there is only a subset of variables (e.g. the angle spreads are missing), then the corresponding
fields can be left empty. They will be completed by the parameter sets. See also the method
’track.generate parameters’ on how to fill this structure automatically.

ground direction Azimuth orientation of the terminal antenna for each snapshot
This variable can be calculated automatically from the positions by the function
’track.compute directions’.

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

31

QuaDRiGa v1.2.32-458 2 SOFTWARE STRUCTURE

height direction Elevation orientation of the terminal antenna for each snapshot

closed Indicates that the track is a closed curve

Methods

h track = track (track type, track length, direction, street length min, street length mu, street length std, curve radius,
turn probability)

Description Creates a new track object.
See ’track.generate’ for a description of the input parameters and the list of supported track types.

compute directions

Description Calculates ground and height orientations from positions

This function calculates the orientations of the transmitter based on the positions. If we assume that
the receive antenna array is fixed on a car and the car moves along the track, then the antenna turns
with the car when the car is changing direction. This needs to be accounted for when generating the
channel coefficients. This function calculates the orientation based on the positions and stored the
output in the ground direction and height direction field of the track object.

copy objects

Description A modified version of the standard physical copy function

While the standard copy command creates new physical objects for each element of obj (in case obj is
an array of object handles), copy objects checks whether there are object handles pointing to the same
object and keeps this information.

correct overlap (overlap)

Description Corrects positions of the segment start to account for the overlap.

After the channel coefficients are calculated, adjacent segments can be merged into a time-continuous
output. The merger assumes that the merging interval happens at the end of one segment, before a new
segments starts. In a reality, however, the scenario change happens in the middle of the overlapping
part (and not at the end of it). This function corrects the position of the segment start to account for
that.

Input overlap The length of the overlapping part relative to the segment length. It can have
values in between 0 (no overlap) and 1 (ramp along the entire segment).

generate (’linear’, track length, direction)

Description Creates a linear track with given length and direction. Direction describes the travel direction along
the track in [rad] in mathematical sense (i.e. 0 means east, pi/2 means north, pi means west and -pi/2
south). If ”track length” or ”direction” is not specified, then the default track is 1 m long and has a
random direction.

Input track length The track length in [m]. Default length is 1 m.
direction specifies the driving direction in [rad]. The default is random.

generate (’circular’, track length, direction)

Description Creates a circular track with given length and starting-direction.

Input track length The circumference of the circular track in [m]. Default is 62.8 m.
direction The starting point on the circle in [rad]. Positive values define the travel direction

as counter clock-wise and negative values as clock-wise. E.g. 0 sets the start point
in the east of the circle, traveling north; -2π sets it in the east, traveling south.
The default is random.

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

32

QuaDRiGa v1.2.32-458 2 SOFTWARE STRUCTURE

generate (’street’, track length, direction, street length min, street length mu, street length std, curve radius,
turn probability)

Description Emulates a drive route through a city grid.

The mobile terminal starts at point 0, going into a specified direction. The trajectory grid is build
from street segments. The length of each street is specified by the parameters ’street length min’,
’street length mu’, and ’street length sigma’. At the end of a street (i.e. at a crossing), the terminal
turns with a probability specified by ’turn probability’. The change of direction is in between 75 and
105 degrees either left or right. The radius if the curve is given by ’curve radius’. The track is set up
in a way that prevents driving in circles.

Input track length the length in [m]. Default length is 1000 m.
direction specifies the driving direction in [rad] of the first segment in mathematical sense

(0 means east, pi/2 means north). The default value is random.
street length min the minimal street length in [m]. The default is 50 m.
street length mu the median street length in [m]. The default is 187 m. This value was obtained

from measurements in Berlin, Germany.
street length std the standard deviation of the street length in [m]. The default is 83 m. This value

was obtained from measurements in Berlin, Germany.
curve radius the curve radius during a turn in [m]. The default is 10 m.
turn probability the probability of a turn at a crossing. Possible values are in between 0 and 1.

The default is 0.5.

par = generate parameters (overlap, usage, check parfiles, verbose)

Description Generates large scale parameters and stores them in ’par’

This function extracts the LSPs for the given scenario from the ’parameter set’ class and stores them
in ’track.par’. Hence, it automatically generates the LSPs and, thus, implements an easy-to-use
interface for the ’parameter set’ class.

Since the track class does not handle transmitter positions, a default position of [0,0,25] is assumed.
Please refer to ’layout.generate parameters’ for a more detailed description.

Input overlap The length of the overlapping part relative to the segment length.
When there are scenario transitions, KF and PG change smoothly during a prede-
fined interval. The length of that interval is a percentage of previous segment. The
parameter overlap adjusts this percentage, ranging from 0 (i.e. very hard, step-like
change at the scenario boundary) to 1 (very smooth, but long transition).

usage Changes the behavior of the method

usage = 0
Deletes all existing parameters from the track.

usage = 1
Deletes all existing parameters from the track and generates new ones. Existing
LSPs will be overwritten.

usage = 2 (default)
Keeps existing parameters, but generates missing ones. This is useful when, for
example, the effective path gain (PG) is provided, but the other LSPs are unknown.
In this case, the unknown “gaps” are filled with values which are generated from
the provided scenario description.

check parfiles check parfiles = 0 / 1 (default: 1)
Disables (0) or enables (1) the parsing of shortnames and the validity-check for the
config-files. This is useful, if you know that the parameters in the files are valid.
In this case, this saves execution time.

verbose Enables (1, default) or disables (0) the progress bar.

Output par The automatically generated parameters
This variable contains structure of the LSPs with the following fields:

• ds - The delay spread in [s] per segment
• kf - The Ricean K-Factor in [dB] per snapshot
• pg - The effective path gain in [dB] excluding antenna gains per snapshot
• asD - The azimuth angle spread in [deg] per segment at the transmitter
• asA - The azimuth angle spread in [deg] per segment at the receiver
• esD - The elevation angle spread in [deg] per segment at the transmitter
• esA - The elevation angle spread in [deg] per segment at the receiver
• xpr - The NLOS cross-polarization in [dB] per segment

An identical copy of this variable is assigned to ’track.par’.

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

33

QuaDRiGa v1.2.32-458 2 SOFTWARE STRUCTURE

[len, dist] = get length

Description Calculates the length of the track in [m]

Output len Length of a track in [m]
dist Distance of each position (snapshot) from the start of the track in [m]

subtracks = get subtrack (i segment)

Description Splits the track in subtracks for each segment (state)

This function returns the subtracks for the given segment indices. When no input argument is provided,
all subtracks are returned.

After defining segments along the track, one needs the subtrack that corresponds only to one segment
to perform the channel calculation. This new track can consist of two segments. The first segment
contains the positions from the previous segment, the second from the current. This is needed to
generate overlapping channel segments for the merging process.

Input i segment A list of indices indicating which subtracks should be returned. By default, all
subtracks are returned.

Output subtracks A vector of track objects corresponding to the number of segments.

dist = interpolate movement (si, method)

Description Interpolates the movement profile to a distance vector

This function interpolates the movement profile. The distance vector at the output can then be used to
interpolate the channel coefficients to emulate varying speeds. See also the tutorial “Applying Varying
Speeds (Channel Interpolation)” in Section A.6 for more details.

Input si the sampling interval in [seconds].

method selects the interpolation algorithm. The default is cubic spline interpolation. Op-
tional are:

• nearest - Nearest neighbor interpolation
• linear - Linear interpolation
• spline - Cubic spline interpolation
• pchip - Piecewise Cubic Hermite Interpolating Polynomial
• cubic - Cubic spline interpolation

Output dist Distance of each interpolated position from the start of the track in [m]

interpolate positions (samples per meter)

Description Interpolates positions along the track

This function interpolates the positions along the track such that it matches the samples per meter
specifies in the simulation parameters.

The channel model operates on a position-based sample grid. That means that the ’channel builder’
generates one CIR for each position on the track. In practise, however, a time continuous evolution of
the CIR is often needed. This can be interpolated from the position-based grid, provided that the spatial
sample theorem is not violated (i.e. the channel needs to be sampled at least twice per half wave length).
In order to do that, enough sample points are needed along the track. INTERPOLATE POSITIONS
calculates the missing sample points and places them equally spaced along the track. This corresponds
to a constant speed when evaluating the output CIRs. The required value for ’samples per meter’ can
be obtained from the ’simulation parameters’ object.

Input samples per meter the samples per meter (e.g. from ’simulation parameters.samples per meter’).

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

34

QuaDRiGa v1.2.32-458 2 SOFTWARE STRUCTURE

set scenario (scenario, probability, seg length min, seg length mu, seg length std)

Description Assigns random scenarios and creates segments.

This function can be used to create segments along the trajectory and assign scenarios to the segments.
If there are less than 3 input arguments (i.e. only ’scenario’ and/or ’probability’ is given), then no
segments will be created.
To create segments with the default settings call ’set scenario(scenario,[],[])’.

Input scenario A cell array of scenario-names. Each scenario (synonym for propagation en-
vironment) is described by a string (e.g. “MIMOSA 16-25 LOS” or “WIN-
NER SMa C1 NLOS”). A list of supported scenarios can be obtained by calling
’parameter set.supported scenarios’. The scenario parameters are stored in the
configuration folder “config” in the QuaDRiGa main folder. The filenames (e.g.
“MIMOSA 16-25 LOS.conf”) also serves as scenario name.

probability The probability for which the scenario occurs. This parameter must be a vector of
the same length as there are scenarios. Probabilities must be specified in between 0
and 1. The sum of the probabilities must be 1. By default (or when ’probability’
is set to ’[]’), each scenario is equally likely.

seg length min the minimal segment length in [m]. The default is 10 m.
seg length mu the median segment length in [m]. The default is 30 m.
seg length std the standard deviation of the street length in [m]. The default is 12 m.

set speed (speed)

Description Sets a constant speed in [m/s] for the entire track.

This function fills the ’track.movement profile’ field with a constant speed value. This helps to reduce
computational overhead since it is possible to reduce the computation time by interpolating the channel
coefficients.

Input speed The terminal speed in [m/s]

split segment (mi, ma, mu, sig, no check)

Description Splits long segments in subsegments of the same type.

Input mi Minimum length of the subsegment in [m], default: 10m
ma Maximum length of the subsegment in [m], must be > 2*mi, default: 30m
mu Mean length of the subsegment (mi < mu < ma), default: 15m
sig Std of the length of the subsegment, default: 5m
no check Disable parsing of input variables, default: false

visualize

Description Plots the track.

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

35

QuaDRiGa v1.2.32-458 2 SOFTWARE STRUCTURE

2.2.4 Class “layout”

Objects of this class define the network layout of a simulation run. Each network layout has one or more
transmitters and one or more receivers. Each transmitter and each receiver need to be equipped with an
antenna array which is defined by the array class. In general, we assume that the transmitter is at a fixed
position and the receiver is mobile. Thus, each receivers movement is described by a track.

Properties

name Name of the layout
simpar Handle of a ’simulation parameters’ object. See Section 2.2.1
no tx Number of transmitters (or base stations)
no rx Number of receivers (or mobile terminals)
tx name Identifier of each Tx, must be unique
tx position Position of each Tx in global cartesian coordinates using units of [m]
tx array Handles of ’array’ objects for each Tx. See Section 2.2.2
rx name Identifier of each Tx, must be unique
rx position Initial position of each Rx (relative to track start) in global cartesian coordinates using units of [m]
rx array Handles of ’array’ objects for each Rx. See Section 2.2.2
track Handles of track objects for each Rx. See Section 2.2.3
pairing An index-list of links for which channel are created. The first row corresponds to the Tx and the

second row to the Rx.
no links Number of links for which channel coefficients are created (read only)

Methods

h layout = layout (simpar)

Description Creates a new layout object.

Input simpar Handle of a ’simulation parameters’ object. See Section 2.2.1

[h parset, h cb] = create parameter sets (initialize, check parfiles)

Description Creates ’parameter set’ objects based on layout specification

This function processes the data in the ’layout’ object. First, all tracks in the layout are split into
subtracks. Each subtrack corresponds to one segment. Then, then scenario names are parsed. A
’parameter set’ object is created for each scenario and for each transmitter. For example, if there
are two terrestrial BSs, each having urban LOS and NLOS users, then 4 ’parameter set’ objects will
be created (BS1-LOS, BS2-NLOS, BS2-LOS, and BS2-NLOS). The segments are then assigned to the
’parameter set’ objects. In the last step, the parameter maps are created (see Section 3.1). This can
be disabled by setting ’initialize = 0’.

Input initialize Enables (1, default) or disables (0) the generation of the parameter maps. If
you want to adjust the parameters first, use ’initialize = 0’, then adjust the
parameters in the ’parameter set’ objects and call ’update parameters’ manually.

check parfiles Enables (1, default) or disables (0) the parsing of shortnames and the validity-
check for the config-files. This is useful, if you know that the parameters in the
files are valid. In this case, this saves some execution time.

Output h parset A matrix of ’parameter set’ objects. Rows correspond to the scenarios, columns
correspond to the transmitters. See Section 2.2.5

h cb A vector of ’channel builder’ objects. See Section 2.2.6

mem = estimate memory usage (verbose)

Description This function estimates the memory requirements for running the simulation specified by the layout.
This can help to determine if the computer is equipped with enough memory before starting complex
simulations.

Input verbose Shows a detailed report of the memory requirements (default = 1).

Output mem The estimate of the required memory in [Bytes].

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

36

QuaDRiGa v1.2.32-458 2 SOFTWARE STRUCTURE

h layout = layout.generate (’regular’, no sites, isd, h array)

Description generates a new multicell layout using a regular grid of BS positions. Each BS has three sectors.

Input no sites the number of sites. This can be be 1, 7 or 19 - resulting in 3, 21 or 57 sectors,
respectively.

isd the inter-site distance between the BSs in [m].
h array the antenna array. ’h array’ is for one sector only. It will be rotated to match the

sector orientations and copied to all sites. The broadside-direction of the provided
antenna must be 0 (facing east).

Output h layout The generated layout.

[par, h parset] = generate parameters (overlap, usage, check parfiles)

Description Generates large scale parameters and stores them in ’track.par’

Normally, parameters are handled by objects of the ’parameter set’ class, which are gener-
ated by calling ’layout.create parameter sets’. Those objects then feed the parameters to the
’channel builder’. However, this method is rather inflexible when the user wants to manipulate
the parameters directly. As an alternative, parameters can be provided in the property ’track.par’ of
the ’track’ class. This allows the user to edit parameters without dealing with the ’parameter set’
objects.

This function extracts the LSPs for the given scenario from the ’parameter set’ class and stores them
in ’track.par’. Hence, it automatically generates the LSPs and, thus, implements an easy-to-use
interface for the ’parameter set’ class.

Input overlap The length of the overlapping part relative to the segment length.
When there are scenario transitions, KF and PG change smoothly during a prede-
fined interval. The length of that interval is a percentage of previous segment. The
parameter overlap adjusts this percentage, ranging from 0 (i.e. very hard, step-like
change at the scenario boundary) to 1 (very smooth, but long transition).

usage Changes the behavior of the method

usage = 0
Deletes all existing parameters from the track.

usage = 1
Deletes all existing parameters from the track and generates new ones. Existing
LSPs will be overwritten.

usage = 2 (default)
Keeps existing parameters, but generates missing ones. This is useful when, for
example, the effective PG is provided, but the other LSPs are unknown. In this
case, the unknown “gaps” are filled with values which are generated from the
provided scenario description.

check parfiles check parfiles = 0 / 1 (default: 1)
Disables (0) or enables (1) the parsing of shortnames and the validity-check for the
config-files. This is useful, if you know that the parameters in the files are valid.
In this case, this saves execution time.

Output par The automatically generated parameters.
This cell array contains a parameter structure of the LSPs for each receiver with
the following fields:

• ds - The delay spread in [s] per segment
• kf - The Ricean K-Factor in [dB] per snapshot
• pg - The effective path gain in [dB] excluding antenna gains per snapshot
• asD - The azimuth angle spread in [deg] per segment at the transmitter
• asA - The azimuth angle spread in [deg] per segment at the receiver
• esD - The elevation angle spread in [deg] per segment at the transmitter
• esA - The elevation angle spread in [deg] per segment at the receiver
• xpr - The NLOS cross-polarization in [dB] per segment

An identical copy of this variable is assigned to ’track.par’.
h parset A matrix of ’parameter set’ objects. Rows correspond to the scenarios, columns

correspond to the transmitters. See Section 2.2.5

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

37

QuaDRiGa v1.2.32-458 2 SOFTWARE STRUCTURE

[h channel, h parset, h cb] = get channels (sampling rate, check parfiles)

Description Calculate the channel coefficients.

This is the most simple way to create the channel coefficients. This function executes all steps that are
needed to generate the channel coefficients. Hence, it is not necessary to use use the ’parameter set’
or ’channel builder’ objects.

Input sampling rate channel update rate in [s]. This parameter is only used if a speed profile is provided
in the track objects. Default value: 0.01 = 10 ms

check parfiles Enables (1, default) or disables (0) the parsing of shortnames and the validity-
check for the config-files. This is useful, if you know that the parameters in the
files are valid. In this case, this saves some execution time.

Output h channel A vector channel objects. See Section 2.2.7
h parset A matrix of ’parameter set’ objects. Rows correspond to the scenarios, columns

correspond to the transmitters. See Section 2.2.5
h cb A vector of ’channel builder’ objects. See Section 2.2.6

[h channel, h cb] = get channels seg (tx, rx, seg, overlap)

Description Returns the channel coefficients for a single segment only

This function can be used to obtain the channel coefficients for a single segment or single rx-tx com-
bination only. Thus, the channel model can be run in ”streaming-mode”, where updates are provided
on the fly. This can significantly reduce the memory requirements for long time-sequences. (However,
the parameter maps still need to be generated for the entire scenario.)

Features:

• Parameter maps will be deleted after the parameters were extracted to free memory before
creating the channels.

• Caching will be used to avoid multiple calculation of the same overlapping regions.
• Preinitialization will be used to return the same coefficients for successive calls.

Input tx The index of the transmitter (e.g. the BS)
rx The index of the receiver, or track (e.g. the BS)
seg The segment indices on the the track. If it is not provided or empty, the entire

track is returned. It is also possible to concat successive segments, i.e.: [1:3] or
[3:5], etc.

overlap The opverlapping fraction for the channel merger. Default is 0.5

Output h channel A channel object. See Section 2.2.7
h cb A vector of ’channel builder’ objects. See Section 2.2.6

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

38

QuaDRiGa v1.2.32-458 2 SOFTWARE STRUCTURE

[map, x coords, y coords] = power map (scenario, usage, sample distance, x min, y max, x max, y min, tx power,
rx height)

Description Calculates a power-map for the given layout.
This function calculates receive power values in [W] on a square lattice at a height of ’rx height’ above
the ground for the given layout. This helps to predict the performance for a given setup.

Input scenario The scenario for which the map shall be created. There are four options:

1. A string describing the scenario. A list of supported scenarios can be ob-
tained by calling ’parameter set.supported scenarios’.

2. cell array of strings describing the scenario for each transmitter in the layout.
3. A ’parameter set’ object. This method is useful if you need to edit the

parameters first. For example: call ’p = parameter set(’UMal’)’ to load
the parameters. Then edit ’p.scenpar’ or ’p.plpar’ to adjust the settings.

4. Aa array of ’parameter set’ objects describing the scenario for each trans-
mitter in the layout.

usage A string specifying the detail level. The following options are implemented:

• ’quick’ - Uses the antenna patterns, the LOS path, and the path gain from
the scenario

• ’sf’ - Uses the antenna patterns, the LOS path, the path gain from the
scenario, and a shadow fading map

• ’detailed’ - Runs a full simulation for each pixel of the map (very slow)
• ’phase’ - Same as quick, but the output contains the complex-valued am-

plitude instead of the power

sample distance Distance between sample points in [m] (default = 10 m)
x min x-coordinate in [m] of the top left corner
y max y-coordinate in [m] of the top left corner
x max x-coordinate in [m] of the bottom right corner
y min y-coordinate in [m] of the bottom right corner

tx power A vector of tx-powers in [dBm] for each transmitter in the layout. This power is
applied to each transmit antenna in the tx-antenna array. By default (if tx power

is not given), 0 dBm are assumed.
rx height Height of the receiver points in [m] (default = 0 m)

Output map A cell array containing the power map for each tx array in the layout. The power
maps are given in [W] and have the dimensions
[n y coords , n x coords , n rx elements , n tx elements].

x coords Vector with the x-coordinates of the map in [m].
y coords Vector with the y-coordinates of the map in [m].

randomize rx positions (max dist, min height, max height, track length)

Description Generates random Rx positions and tracks.
Places the users in the layout at random positions. Each user will be assigned a linear track with random
direction. The random height of the user terminal will be in between ’min height’ and ’max height’.

Input max dist the maximum distance from the layout center in [m]. Default is 50 m.
min height the minimum user height in [m]. Default is 1.5 m.
max height the maximum user height in [m]. Default is 1.5 m.
track length the length of the linear track in [m]. Default is 1 m.

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

39

QuaDRiGa v1.2.32-458 2 SOFTWARE STRUCTURE

[pairs, power] = set pairing (method, threshold, tx power, check parfiles)

Description Determines links for which channel coefficient are generated.

This function can be used to automatically determine the links for which channel coefficients should be
generated. For example, in a large network there are multiple base stations and mobile terminals. The
base stations, however, only serve a small area. It the terminal is far away from this area, it will receive
only noise from this particular BS. In this case, the channel coefficients will have very little power and
do not need to be calculated. Disabling those links can reduce the computation time and the storage
requirements for the channel coefficients significantly. There are several methods to du this which can
be selected by the input variable ’method’.

Methods ’all’ Enables the simulation of all links.

’power’ Calculates the expected received power taking into account the path loss, the
antenna patterns, the LOS polarization, and the receiver orientation. If the power
of a link is below the ’threshold’, it gets deactivated.

’sf’ Same as ’power’, but this option also includes the shadow fading. Therefore, the
LSPs have to be calculated. LSPs get then stored in ’layout.track.par’. This
method is the most accurate. The actual power in the channel coefficients can be
up to 6 dB higher due to multipath effects.

Input method Link selection method. Supported are: ’all’, ’power’, and ’sf’ (see above).

threshold If the Rx-power is below the threshold in [dBm], the link gets deactivated.

tx power A vector of tx-powers in [dBm] for each transmitter in the layout. This power is
applied to each transmit antenna in the tx-antenna array. By default (if ’tx power’
is not given), 0 dBm are assumed.

check parfiles Disables (0) or enables (1, default) the parsing of shortnames and the validity-
check for the config-files. This is useful, if you know that the parameters in the
files are valid. In this case, this saves execution time.

Output pairs An index-list of links for which channel are created. The first row corresponds
to the Tx and the second row to the Rx. An identical copy gets assigned to
’layout.pairing’.

power A matrix containing the estimated receive powers for each link in [dBm]. Rows cor-
respond to the receiving terminal, columns correspond to the transmitter station.
For MIMO links, the power of the strongest MIMO sublink is reported.

pos = set satellite pos (rx latitude, sat el, sat az, sat height, tx no)

Description Calculates the Tx position from a satellite orbit.
QuaDRiGas reference coordinate system is on the surface of the earth. In order to use QuaDRiGa
for satellite links, the satellite position must be set. Normally, this position is given in azimuth and
elevation relative to the users position. This function takes a satellite orbital position and calculates
the corresponding transmitter coordinates.

Input rx latitude The receiver latitude coordinate on the earth surface in [deg]. Default is 52.5.
sat el Satellite elevation in [deg]. Default is 31.6.
sat az Satellite azimuth in [deg] given in compass coordinates. Default is 180° (south).
sat height Satellite height in [km] relative to earth surface. Default is 35786 (GEO orbit).
tx no The ’tx no’ in the layout object for which the position should be set. Default is 1.

Output pos The satellite positions in the metric QuaDRiGa coordinate system.

visualize

Description Plots the layout.

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

40

QuaDRiGa v1.2.32-458 2 SOFTWARE STRUCTURE

2.2.5 Class “parameter set”

This class implements all functions that are necessary to generate and manage correlated LSPs. It also
provides interfaces for the channel builder. LSPs are the shadow fading, the Ricean K-Factor, the RMS delay
spread and the four angles (elevation and azimuth at the transmitter and receiver). This class implements
some core functions of the channel model and the user does normally not need to interact with it. However,
if parameter tables need to be changed, here is the place to do so.

Properties

name Name of the ’parameter set’ object
simpar Handle of a ’simulation parameters’ object. See Section 2.2.1
tx array Handles of ’array’ objects for each Tx. See Section 2.2.2
rx array Handles of ’array’ objects for each Rx. See Section 2.2.2
rx track Handles of ’track’ objects for each Rx. See Section 2.2.3
scenario Name of the scenario (text string)
scenpar The parameter table. See Section 2.4
plpar Parameters for the path loss. See Section 2.4
no positions Number of receiver positions associated to this ’parameter set’ object

Note that each segment in longer tracks is considered a new Rx position.
positions The list of initial positions for which LSPs are generated

This variable is obtained from the properties ’track.initial position’ and ’layout.rx position’
tx position The transmitter position obtained from the corresponding ’layout.tx position’

ds The RMS delay spread in [s] for each receiver position
kf The Ricean K-Factor [linear scale] for each receiver position
sf The shadow fading [linear scale] for each receiver position
asD The azimuth spread of departure in [deg] for each receiver position
asA The azimuth spread of arrival in [deg] for each receiver position
esD The elevation spread of departure in [deg] for each receiver position
esA The elevation spread of arrival in [deg] for each receiver position
xpr The cross polarization ratio [linear scale] for each receiver position

ds map The RMS delay spread map in [log10(s)]
kf map The Ricean K-Factor map [logarithmic scale]
sf map The shadow fading mpa [logarithmic scale]
asD map The azimuth spread of departure map in [log10(deg)]
asA map The azimuth spread of arrival map in [log10(deg)]
esD map The elevation spread of departure map in [log10(deg)]
esA map The elevation spread of arrival map in [log10(deg)]

map extension Distance in [m] that is added to each direction when generating maps
map extent Extent of the mpas in x- and y-direction [xmin, xmax; ymin, ymax] in [m]
map size Number of map pixels in x and y-direction [n x samples; n y samples]
samples per meter Resolution of the decorrelation maps in [samples/m]

This value is obtained from ’simulation parameters.map resolution’
map valid Indicates if maps contain valid data
LSP xcorr matrix The Cross-correlation matrix for the LSPs
LSP matrix isOK Determines if the XCorr-matrix is positive definite
map x coord The x-coordinates in [m] for each pixel of the maps
map y coord The y-coordinates in [m] for each pixel of the maps

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

41

QuaDRiGa v1.2.32-458 2 SOFTWARE STRUCTURE

Methods

h parset = parameter set (scenario, positions, check parfiles)

Description Creates a new ’parameter set’ object.

Input scenario The scenario name for which the parameters should be loaded. A list of supported
scenarios can be obtained by calling ’parameter set.supported scenarios’.

positions The list of initial positions for which LSPs should be generated.
check parfiles check parfiles = 0 / 1 (default: 1)

Disables (0) or enables (1) the parsing of shortnames and the validity-check for the
config-files. This is useful, if you know that the parameters in the files are valid.
In this case, this saves execution time.

Output h parset A ’parameter set’ object.

copy objects

Description A modified version of the standard physical copy function

While the standard copy command creates new physical objects for each element of obj (in case obj is
an array of object handles), copy objects checks whether there are object handles pointing to the same
object and keeps this information.

angles = get angles

Description Calculates the departure- and arrival angles of the LOS path between Tx and Rx.

Output angles A matrix containing the four angles:

• Azimuth of Departure at the Tx (AoD, row 1)
• Azimuth of Arrival at the Rx (AoA, row 2)
• Elevation of Departure at the Tx (EoD, row 3)
• Elevation of Arrival at the Rx (EoA, row 4)

The number of columns corresponds to the number of rx-positions.

[h channel, h cb] = get channels

Description Calculate the channel coefficients.

Output h channel A vector channel objects. See Section 2.2.7
h cb A vector of ’channel builder’ objects. See Section 2.2.6

dist = get distances

Description Calculates the distances between Rx and Tx.

Output dist A vector containing the distances between each Rx and the Tx in [m].

[pl, scale sf] = get pl (evaltrack, i mobile)

Description Calculates the path loss. The path loss model is specified in the configuration files and in
’parameter set.plpar’.

Input evaltrack A ’track’ object for which the PL should be calculated. If ’evaltrack’ is not
given, then the path loss is calculated for each Rx position. Otherwise the path
loss is calculated for the positions provided in ’evaltrack’.

i mobile The Rx-index. If it is not given, the PL is evaluated for all Rx positions. If
’evaltrack’ is given, and if ’simulation parameters.drifting precision’ is set
to 3, then this parameter is required to select the Rx antenna array (default = 1).

Output pl The path loss in [dB]
scale sf In some scenarios, the SF might change with increasing distance between Tx and

Rx. Hence, the shadow fading provided by the parameter map has to be changed
accordingly. The second output parameter ”scale sf” can be used for scaling the
(logarithmic) SF value from the map.

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

42

QuaDRiGa v1.2.32-458 2 SOFTWARE STRUCTURE

[sf,kf] = get sf profile (evaltrack, i mobile)

Description This function returns the shadow fading and the K-factor along the given track. This function is mainly
used by the channel builder class to scale the output channel coefficients. The profile is calculated by
using the data in the correlation maps and interpolating it to the positions in the given track. Increasing
the resolution of the maps also increases the resolution of the profile.

Input evaltrack A ’track’ object for which the SF and KF should be interpolated.

i mobile If ’simulation parameters.drifting precision’ is set to 3, then this parameter
is required to select the Rx antenna array.

Output sf The shadow fading [linear scale] along the track.
kf The K-factor [linear scale] along the track.

set par (name, value)

Description Sets the parameters of all objects in ’parameter set’ arrays.
This function sets all values of the parameter specified by ’name’ of the ’parameter set’-array to the
given value.

Example: ’set par(’ds’ , 1e-9) sets all ds-values to 1 ns.

Input name The fieldname that should be altered. Supported are: ’ds’, ’kf’, ’sf’, ’asD’, ’asA’,
’esD’, ’esA’, ’samples per meter’, ’map extension’, and ’LSP xcorr matrix’.

value The value that should be assigned. If the ’LSP xcorr matrix’ is altered, then the
lower triangular part of the matrix is ignored and replaced by a transpose of the
upper triangular matrix.

[scenarios, file names, file dir] = parameter set.supported scenarios (parse shortnames)

Description Returns a list of supported scenarios.

Input parse shortnames This optional parameter can disable (0) the shortname parsing. This is significantly
faster. By default shortname parsing is enabled (1).

Output scenarios A cell array containing the scenario names. Those can be used in ’track.scenario’
file names The names of the configuration files for each scenario.
file dir The directory where each file was found. You can place configuration file also in

you current working directory.

update parameters (force)

Description Generates the LSP maps and updates the parameters for all terminals.

This function calculates correlated large scale parameters for each user position. Those parameters are
needed by the channel builder class to calculate initial parameters for each track or segment which are
then evolved into time varying channels.

By default, ’update parameters’ reads the values given in the ’track’ objects of the ’layout’. If there
are no values given or if parts of the values are missing, the correlation maps are generated to extract
the missing parameters.

Input force Changes the behavior of the function.

force = 0 (default)
Tries to read the parameters from ’layout.track.par’. If they are not provided
or it they are incomplete, they are completed with values from the LSP maps. If
the maps are invalid (e.g. because they have not been generated yet), new maps
are created.

force = 1
Creates new maps and reads the LSPs from those maps. Values from
’layout.track.par’ are ignored. Note that the parameters ’pg’ and ’kf’ will still
be taken from ’layout.track.par’ when generating channel coefficients.

force = 2
Creates dummy data for the maps and the LSPs. Any existing maps will
be deleted. Data and maps will be declared as invalid and the next time
when ’update parameters’ is called, new parameters are generated. Values in
’layout.track.par’ will NOT be affected.

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

43

QuaDRiGa v1.2.32-458 2 SOFTWARE STRUCTURE

2.2.6 Class “channel builder”

This class implements all functions that are needed to generate the channel coefficients. It thus implements
the core components of the channel model. The class holds all the input variables as properties. It’s main
function ’get channels’ then generates the coefficients. The procedure is summarized as follows:

The channel builder first generates a set of random clusters around each receiver. This is done by drawing
random variables for the delay, the power and the departure and arrival angles for each cluster. Each cluster
thus represents the origin of a reflected (and scattered) signal. The clusters are then represented as taps in
the final CIR. The random variables fit the distributions and correlations defined by the ’parameter set’
object.

Next, antenna dependent parameters are extracted for each user. Those depend on the position of the
terminal, its orientation and the equipped antennas. The polarization rotation of the NLOS taps is modeled
by a random variable which fits to the distribution defined by the ’parameter set’. The LOS polarization
is calculated from the geometric orientation of the antennas. A core function here is the interpolation of the
antenna patterns which results in a specific H and V value for each subpath.

The core function then generates the coefficients themselves. This is done for each antenna element and for
each snapshot separately and also includes the Doppler shift of each subpath. Finally, the K-factor and the
shadow fading are applied and a all the data is returned as an ’channel’ object.

Properties

name Name of the ’channel builder’ object
par The ’parameter set’ object for this channel builder
taus The initial delays for each path in [s]. Rows correspond to the MTs, columns to the paths.
pow The normalized initial power (squared average amplitude) for each path. Rows correspond to the

MTs, columns to the paths. The sum over all columns must be 1.
AoD The initial azimuth of departure angles for each path in [rad].
AoA The initial azimuth of arrival angles for each path in [rad].
EoD The initial elevation of departure angles for each path in [rad].
EoA The initial elevation of departure angles for each path in [rad].
xpr The initial cross polarization power ratio in [dB] for each sub-path. The dimensions correspond to

the MT, the path number, and the sub-path number.
pin The initial phases in [rad] for each sub-path.
kappa The phase offset angle for the circular XPR in [rad]. The dimensions correspond to the MT, the path

number, and the sub-path number.
random pol Random phasors for the WINNER polarization coupling method. The dimensions correspond to

polarization matrix index ’[1 3 ; 2 4]’, the subpath number, and the MT.
subpath coupling A random index list for the mutual coupling of subpaths at the Tx and Rx. The dimensions correspond

to the subpath index (1-20), the angle (AoD, AoA, EoD, EoA), the path number and the MT.

Methods

h cb = channel builder (h parset)

Description Creates a new ’channel builder’ object.

Input h parset A ’parameter set’ object.

Output h cb A ’channel builder’ object.

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

44

QuaDRiGa v1.2.32-458 2 SOFTWARE STRUCTURE

[phi d lm, theta d lm, lbs pos, fbs pos] = calc scatter positions

Description Calculates the positions of the scatterers

This function calculates the positions of the scatterers and initializes the drifting module. The output
variables are the NLOS Tx angles for the precomputation of the Tx array response.

Input i mobile The index of the mobile terminal within the channel builder object

Output phi d lm The departure azimuth angles for each subpath.
theta d lm The departure elevation angles for each subpath.
lbs pos The position of the last-bounce scatterer.
fbs pos The position of the first-bounce scatterer.

h channel = get channels

Description Generates the channel coefficients. This is the main function of the ’channel builder’.

Output h channel An array of ’channel’ objects.

h channel = channel builder.get los channels (h parset)

Description Generates channel coefficients for the LOS path only.
This function generates static coefficients for the LOS path only. This includes the following properties:

• antenna patterns
• orientation of the Rx (if provided)
• polarization rotation for the LOS path
• plane-wave approximation of the phase
• path loss
• shadow fading

No further features of QuaDRiGa are used (i.e. no drifting, spherical waves, time evolution, multipath
fading etc.). This function can thus be used to acquire quick previews of the propagation conditions
for a given layout.

Input h parset A ’parameter set’ object (see Section 2.2.5).

Output h channel A ’channel’ object (see Section 2.2.7). The output contains one coefficient for each
position in ’h parset.position’.

aso = init parameters(force)

Description Generates the initial parameters

This function creates the initial parameters for the channel builder. If the parameters are already
initialized, no new update is performed. The optional parameter ’force’ can be used to enforce an
update, even if the parameters are already given.

Input force Enforces (1) the generation of new parameters. Default: 0.

Output aso An array with angular spread values for each terminal. The rows are
[AoD ; AoA ; EoD ; EoA]

visualize clusters(i mobile , i cluster)

Description Plots the scattering clusters for a mobile terminal

This method plots all scattering clusters for a given mobile terminal. If i cluster is not given, then
only the main paths are shown for all MPCs. If i cluster is given, then also the subpaths are shown
for the selected cluster.

The plot is in 3D coordinates. You can rotate the image using the rotate tool.

Input i mobile The index of the mobile terminal within the channel builder object
i cluster The index of the scattering cluster. (Optional)

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

45

QuaDRiGa v1.2.32-458 2 SOFTWARE STRUCTURE

2.2.7 Class “channel”

Objects of this class are the output of the channel model. They are created by the ’channel builder’. By
default, channel coefficients are provided in time domain, as a list of delays and complex-valued amplitudes.
However, this class also implements certain methods to postprocess the channel data. Those include:

• Transformation into frequency domain
• Interpolation in time domain (to change the terminal speed and sampling rate)
• Combining channel traces into longer segments (including birth and death of clusters)

Properties

name Name of the ’channel’ object.
This string is a unique identifier of the ’channel’ object. The ’channel builder’ creates one channel
object for each MT, each Tx and each segment. They are further grouped by scenarios (propagation
environments). The string consists of four parts separated by an underscore ’ ’. Those are:

• The scenario name from ’track.scenario’
• The transmitter name from ’layout.tx name’
• The receiver name from ’layout.rx name’
• The segment number

After ’channel.merge’ has been called, the name string consists of:

• The transmitter name from ’layout.tx name’
• The receiver name from ’layout.rx name’

version Version number of the QuaDRiGa release that was used to create the ’channel’ object.

individual delays Indicates if the path delays are identical on each MIMO link (0) or if each link has a different path
delay (1).

coeff The complex-valued channel coefficients for each path. The indices of the 4-D tensor are:
[Rx-Antenna , Tx-Antenna , Path , Snapshot]

delay The delays for each path.
There are two different options. If the delays are identical on the MIMO links, i.e. ’individual delays

= 0’, then ’delay’ is a 2-D matrix with dimensions [Path , Snapshot]. If the delays are different on
the MIMO links, then ’delay’ is a 4-D tensor with dimensions [Rx-Antenna , Tx-Antenna , Path ,
Snapshot].

initial position The snapshot number for which the initial LSPs have been generated.
Normally, this is the first snapshot. However, if the user trajectory consists of more than one seg-
ment, then ’initial position’ points to the snapshot number where the current segment starts. For
example: If ’initial position’ is 100, then snapshots 1-99 are overlapping with the previous segment.

tx position Position of each Tx in global cartesian coordinates using units of [m].

rx position The receiver position global cartesian coordinates using units of [m] for each snapshot.

no rx Number of receive elements (read only)
no tx Number of transmit elements (read only)
no path Number of paths (read only)
no snap Number of snapshots (read only)

Methods

h channel = channel (Ccoeff, Cdelay, Cinitial position)

Description Creates a new ’channel’ object.

Input Ccoeff The complex-valued channel coefficients for each path.
Cdelay The delays for each path.
Cinitial position The snapshot number for which the initial LSPs have been generated.

Output h channel A ’channel’ object.

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

46

QuaDRiGa v1.2.32-458 2 SOFTWARE STRUCTURE

freq response = fr(bandwidth, carriers, i snapshot)

Description Transforms the channel into frequency domain and returns the frequency response.

Input bandwidth The baseband bandwidth in [Hz].

carriers The carrier positions. There are two options:

1. Specify the total number of carriers. In this case, ’carriers’ a scalar natural
number > 0. The carriers are then equally spaced over the bandwidth.

2. Specify the pilot positions. In this case, ’carriers’ is a vector of carrier
positions. The carrier positions are given relative to the bandwidth where
’0’ is the begin of the spectrum and ’1’ is the end. For example, if a 5 MHz
channel should be sampled at 0, 2.5 and 5 MHz, then ’carriers’ must be
set to [0, 0.5, 1].

i snapshot The snapshot numbers for which the frequency response should be calculated. By
default, i.e. if ’i snapshot’ is not given, all snapshots are processed.

Output freq response The complex-valued channel coefficients for each carrier in frequency domain. The
indices of the 4-D tensor are:
[Rx-Antenna , Tx-Antenna , Carrier-Index , Snapshot]

c = interpolate(dist, method)

Description Interpolates the channel coefficients and delays.

The channel builder creates one snapshot for each position that is listed in the track object. When
the channel sampling theorem is not violated (i.e. the sample density is ≥ 2), then the channel can be
interpolated to any other position on the track. This can be used e.g. to emulate arbitrary movements
along the track.

For more information see ’track.movement profile’, ’track.interpolate movement’, or the tutorial
“Applying Varying Speeds (Channel Interpolation)” in Section A.6.

Input dist A vector containing distance values on the track. The distance is measured in [m]
relative to the beginning of the track.

Alternatively, “dist” can be given as a 3-D tensor with dimensions
[Rx-Antenna , Tx-Antenna , Snapshot].
In this case, interpolation os done for each antenna element separately.

method Selects the interpolation algorithm. The default is linear interpolation.
Optional are:

• linear - Linear interpolation (optimized for speed)
• spline - Cubic spline interpolation of the channel coefficients and piecewise

cubic hermite polynomial interpolation for the delays

Output c A ’channel’ object containing the interpolated coefficients and delays for each
entry in ’dist’.

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

47

QuaDRiGa v1.2.32-458 2 SOFTWARE STRUCTURE

c = merge(overlap, optimize, verbose)

Description Combines channel segments into a continuous time evolution channel.

The channel merger implements the continuous time evolution with smooth transitions between seg-
ments. Each segment of a track is split in two parts: an overlapping area with the previous segment
and an exclusive part with no overlapping. Each segment is generated independently by the channel
builder. However, the distance dependent autocorrelation of the large scale parameters was considered
when the parameters were drawn from the corresponding statistics.

Transition from segment to segment is carried out by replacing taps of the previous segment by the
taps of the current segment, one by one. The modeling of the birth/death process is done as published
in the documentation of the WIM2 channel model. The route between adjacent channel segments is
split into sub-intervals equal to the minimum number of taps in both overlapping segments. During
each sub-interval the power of one old tap ramps down and one new tap ramps up. Power ramps are
modeled by a modified sinus function to allow smooth transitions.

Taps from the old and new segments are coupled based on their power. If the number of clusters is dif-
ferent in the channel segments, the weakest clusters are ramped up or down without a counterpart from
the new/old segment. The merging is only done for the NLOS components since the LOS component
has a deterministic behavior. The LOS component is thus just scaled in power.

Input overlap The length of the overlapping part relative to the segment length. It can have
values in between 0 (no overlap) and 1 (ramp along the entire segment). A value of
0 disables the merging process and the channel segments are simply concatenated.
A value of 1 constantly merges the channels. The default setting is 0.5.

optimize The channel merger tries to automatically optimize the pairing of the taps (i.e.
one tap if the old segment ramps down and one of the new ramps up). This is
enabled by default, but it is computing intensive. For quicker results, it can be
disabled by setting ’optimize’ to 0.

verbose Enables (1, default) or disables (0) the progress bar.

Output c An array of ’channel’ objects containing the merged coefficients and delays.

chan out = split tx(varargin)

Description Splits channel arrays based on transmit antenna indices.

This function can be used to split large transmit antenna arrays into smaller arrays. For example, this
can be used to calculate the channels for individual sectors at a BS.
Example: A channel array has channels from three base stations (BSs). The first and second BS have
two sectors, each with two antennas. However, the sector antennas are merged into one array. The
third BS has only one sector. To split the channels into five sectors, the following command can be
used:

cs = c.split({1:2,3:4}, {1:2,3:4}, {1:2});

Notes:

• The order of the inputs must match the transmitters in alphabetical order, i.e. the first input
corresponds to ”Tx01”, the second to ”Tx02” and so on. This is independent of the order in
”layout.tx name”, which might have a different order.

• Outputs are alphabetically sorted.

Input varargin A list of cell-arrays containing the transmit antenna indices.

Output chan out The split channel objects.

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

48

QuaDRiGa v1.2.32-458 2 SOFTWARE STRUCTURE

2.3 Data Flow

The data flow of the QuaDRiGa channel model is depicted in Fig. 4. This figure shows how each of the
processing steps, which are described in detail in the following sections, are linked together. The lines show,
which parameters are exchanged and how often they are updated. Black lines are for parameters that are
either provided by the model users or which are given in the parameter table. Those values are constant.
Blue values are updated once per segment and red values are updated once per snapshot.

Angular Spread, K-Factor

Initial delay for each path

Delay spread, K-Factor

Cluster powers

Generate drifting
AoAs

Cluster-wise azimuth spread, cAoA

Path Loss Parameters

Drifting angles of arrival
X-pol. power ratios

XPRμ XPRσ

Antenna patterns and array geometries, F

DSμ
DSσ
AoAμ
AoAσ

SFσ

Generate initial
delays

Generate cluster
powers

Generate XPR

No. clusters, L

Draw random
initial phases

Generate channel
coefficients

C
ha

nn
el

 c
oe

ff
ic

ie
nt

s

D
el

ay
 f

ac
to

r,
N

o.
 c

lu
st

er
s

Drifting KF

Drifting SF

Connect successive
channel traces

Kμ
Kσ

Corr.

P
er

 c
lu

st
er

 S
F

 s
td

.

Interpolate KF
and SF maps

Drifting delay for each pathGenerate drifting
delays

LOS direction, φLOS

Snapshot position

Merged channel coefficients

S
ce

na
ri

os

Antenna Parameters
Network layout

Transmitter positions
Carrier frequency

User Input Variables

Split terminal trajectories
into segments

M
ap

 S
iz

e

Terminal trajectories
Propagation scenarios

Speed profile

Trajectories
Scenarios

SF map

KF map

Calculate path loss
for each snapshot Drifting Path Loss

Transmitter Positions

Overlapping area

Snapshot position

Snapshot position

Apply speed profile

Return output

Apply path loss, K-factor
and shadow fading

Scaled channel
coefficients

Constant values

One update per segment

One update per snapshot

Generation of
Correlated Large
Scale Parameters

Parameter Table

Figure 4: QuaDRiGa Data Flow

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

49

QuaDRiGa v1.2.32-458 2 SOFTWARE STRUCTURE

2.4 Scenario Specific Parameters

The large-scale parameters (LSPs) are defined by the parameter files which can be found in the folder
’config’ of the QuaDRiGa-Core ’source’ folder. The parameters are processed as follows:

• The states and segments are identified by a name. Examples are
S1 = ’MIMOSA 10-45 LOS’; - parameter set selected for “good state”
S2 = ’MIMOSA 10-45 NLOS’; - parameter set selected for “bad state”

• The name selects the related configuration file. For the given example the files
MIMOSA 10-45 LOS.conf and
MIMOSA 10-45 NLOS.conf are selected

Table 9: Parameter sets provided together with the standard software

LOSonly One LOS Path only, no Shadow-Fading, no Path-Loss

WINNER UMa C2 LOS
WINNER UMa C2 NLOS

WINNER Urban Macrocell
For typical terrestrial base stations deployed above rooftop in densely populated urban
areas. The max. cell radius is about 1 km.

WINNER UMi B1 LOS
WINNER UMi B1 NLOS

WINNER Urban Microcell
For typical terrestrial pico-base stations deployed below rooftop in densely populated
urban areas. The max. cell radius is about 200 m.

WINNER SMa C1 LOS
WINNER SMa C1 NLOS

WINNER Sub-Urban Macrocell
For typical terrestrial base stations deployed above rooftop in sub-urban areas. The
max. cell radius is about 10 km.

WINNER Indoor A1 LOS
WINNER Indoor A1 NLOS

WINNER Indoor Hotspot
For typical indoor deployments such as WiFi or femto-cells.

WINNER UMa2Indoor C4 LOS
WINNER UMa2Indoor C4 NLOS

WINNER Urban Macrocell to Indoor
For users within buildings that are connected to a terrestrial base station deployed above
rooftop in densely populated urban areas.

WINNER UMi2Indoor B4 LOS
WINNER UMi2Indoor B4 NLOS

WINNER Urban Microcell to Indoor
For users within buildings that are connected to terrestrial pico-base stations deployed
below rooftop in densely populated urban areas.

BERLIN UMa LOS
BERLIN UMa NLOS

Terrestrial Urban Macrocell parameters extracted from measurements in Berlin, Ger-
many.

MIMOSA 10-45 LOS
MIMOSA 10-45 NLOS

MIMOSA Satellite to Mobile Parameters for Urban Propagation Elevation range from
10 to 45°. Parameters were extracted from terrestrial measurement using a high-attitude
platform.

MIMOSA 16-25 LOS
MIMOSA 16-25 NLOS

MIMOSA Satellite to Mobile Parameters for Urban Propagation Elevation range from
16 to 25°. Parameters were extracted from terrestrial measurement using a high-attitude
platform.

MIMOSA 25-35 LOS
MIMOSA 25-35 NLOS

MIMOSA Satellite to Mobile Parameters for Urban Propagation Elevation range from
25 to 35°. Parameters were extracted from terrestrial measurement using a high-attitude
platform.

MIMOSA 35-45 LOS
MIMOSA 35-45 NLOS

MIMOSA Satellite to Mobile Parameters for Urban Propagation Elevation range from
35 to 45°. Parameters were extracted from terrestrial measurement using a high-attitude
platform.

2.4.1 Description of the Parameter Table

The QuaDRiGa channel model is a generic model. That means, that it uses the same method for generating
channel coefficients in different environments. E.g. the principal approach is exactly the same in a cellular
network and in a satellite network. The only difference is the parametrization for both cases. Each envi-
ronment is described by 55 individual parameters. These parameters are stored in configuration files that
can be found in the subfolder named “config” in the main channel model folder. The parameters and values
can be describes as follows:

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

50

QuaDRiGa v1.2.32-458 2 SOFTWARE STRUCTURE

• No. Clusters
This value describes the number of clusters. Each cluster is the source of a reflected or scattered wave
arriving at the receiver. Typically there are less clusters in a LOS scenario then in a NLOS scenario.
Note that the number of clusters directly influences the time needed to calculate the coefficients.

• Path Loss (PL)
A common path loss (PL) model for cellular systems is the log-distance model

PL[dB] = A · log10 d+B (1)

where A and B are scenario-specific coefficients. The path-loss exponent A typically varies between
20 and 40, depending on the propagation conditions, the base station height and other influences.
They are typically determined by measurements. d is the distance (in units of meters) between the
transmitter and the receiver. In other environments such as in satellite systems, the PL does not
depend on the distance but has a constant value. In this case, A would be 0.

• Shadow Fading (SF)
Shadow fading occurs when an obstacle gets positioned between the wireless device and the signal
transmitter. This interference causes significant reduction in signal strength because the wave is
shadowed or blocked by the obstacle. It is modeled as log-normal distributed with two parameters:
The standard deviation σ defines the width of the distribution, i.e. the power value (in dB) above or
below the distance dependent PL and the decorrelation distance λ. This parameter defines how fast
the SF varies when the terminal moves through the environment. E.g. a value of 87 means that when
the terminal moves 87 m in any given direction, then the correlation of the value at this distance with
the value at the initial position is e−1 = 0.37.

• Delay Spread (DS)
The root-mean-square (RMS) delay spread is probably the most important single measure for the delay
time extent of a multipath radio channel. The RMS delay spread is the square root of the second
central moment of the power delay profile and is defined to be

στ =

√√√√ 1

Pi
·
L∑
l=1

Pl · (τl)2 −

(
1

Pi
·
L∑
l=1

Pl · τl

)2

(2)

with Pi is the total received power, Pl the cluster-power and τl the cluster delay.

In order to generate the coefficients, QuaDRiGa has to generate delays for each of the multipath
clusters. I.e. the total lengths of scattered paths have to be defined. This generation of delays
is governed by value of the DS in a specific environment. The DS is assumed to be log-normal
distributed and defined by two parameters: Its median value µ and its STD σ. Thus, a values of DSµ
of −6.69 corresponds to 204 ns. σ then defines the range of possible values. E.g. DSσ = 0.3 leads to
typical values in the range of 10−6.69−0.3 = 102 ns to 10−6.69+0.3 = 407 ns. As for the shadow fading,
the decorrelation distance DSλ defines how fast the DS varies when the terminal moves through the
environment.

The delay spread στ is calculated from both, the delays τl and the path powers Pl. I.e. lager delay
spreads στ can either be achieved by increasing the values of τl and keeping Pl fixed or adjusting Pl
and keeping τl fixed. In order to avoid this ambiguity, an additional proportionality factor (delay
factor) rτ is introduced to scale the width of the distribution of τl. rτ is calculated from measurement
data. See Sec. 3.2 for more details.

• Ricean K-Factor (KF)
Rician fading occurs when one of the paths, typically a line of sight signal, is much stronger than
the others. The KF K is the ratio between the power in the direct path and the power in the other,

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

51

QuaDRiGa v1.2.32-458 2 SOFTWARE STRUCTURE

scattered, paths. As for the DS, the KF is assumed to be log-normal distributed. The distribution is
defined by its median value KFµ and its STD KFσ. The decorrelation distance KFλ defines how fast
the KF varies when the terminal moves through the environment.

• Angular Spread
The angular spread defines the distribution of the departure- and arrival angles of each multipath
component in 3D space seen by the transmitter and receiver, respectively. Each path gets assigned an
azimuth angle in the horizontal plane and an elevation angle in the vertical plane. Thus we have four
values for the angular spread:

1. Azimuth spread of Departure (AsD)
2. Azimuth spread of Arrival (AsA)
3. Elevation spread of Departure (EsD)
4. Elevation spread of Arrival (EsA)

Each one of them is assumed to be log-normal distributed. Hence, we need the parameters µ, σ and
λ to define the distributions. These spreads are translated into specific angles for each multipath
cluster. Additionally, we assume that clusters are the source of several multipath components that are
not resolvable in the delay domain. Thus, these sub-paths do not have specific delays, but they have
different departure- and arrival angles. Thus, we need an additional parameter cφ for each of the four
angles that scales the dimensions of the clusters in 3D-space. See Sec. 3.3 for details.

• Cross-polarization Ratio (XPR)
The XPR defines how the polarization changes for a multipath component. I.e. the initial polarization
of a path is defined by the transmit antenna. However, for the NLOS components, the transmitted
signal undergoes some diffraction, reflection or scattering before reaching the receiver.

The XPR (in dB) is assumed to be normal distributed where µ and σ define the distribution. We
translate the XPR in a polarization rotation angle which turns the polarization direction. A XPR
value where a value of +Inf means that the axis remains the same for all NLOS paths. I.e. vertically
polarized waves remain vertically polarized after scattering. On the other hand, a value of -Inf dB
means that the polarization is turned by 90°. In case of 0 dB, the axis is turned by 45°, i.e. the power
of a vertically polarized wave is split equally into a H- and V component.

The following table gives an overview of the parameters in the config files. They get converted into a
structure ’parameter set.scenpar’.

Parameter Unit or type Description

plpar.model
(PL model)

Text string Selects the model for average path loss. For satellite applications the pathloss is
defined by the satellite distance and is assumed to be constant for the reception
are. For terrestrial cases pathloss models like ”Hata” or others (e.g. WINNER
pathloss models) can be selected.

plpar.A
(PL A)

dB For satellite applications this parameter defines the average path loss and is equiv-
alent to the “mu” of the lognormal distribution of the shadow fading.

Parameters in structure ’parameter set.scenpar’

Large-Scale Parameters Those parameters describe how the large-scale parameters vary within a propaga-
tion environment.

SF sigma
SF lambda

dB
meter

Those parameter describe the slow fading implemented as Lognormal distribu-
tion and filtered (see “map” generation) according to the de-correlation distance
“lambda”.

KF mu
KF sigma
KF lambda

dB
dB
meter

Statistical properties of the K-factor

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

52

QuaDRiGa v1.2.32-458 2 SOFTWARE STRUCTURE

xpr mu
xpr sigma

dB
dB

The XPR is defined by the XPR-Antenna (see antenna pattern) and the XPR
“environment”. The parameters describe the statistical properties of the XPR
“environment”. For the XPR, no correlation map is calculated and the XPR is
updated once per segment. Note: For the LOS component no XPR environment is
assumed, only the XPR antenna is applied. Hence the overall XPR depends also
highly on the K-factor.

DS mu
DS sigma
DS lambda

log10([s])
log10([s])
meter

Statistical properties of the delay spread.

AS A mu
AS A sigma
AS A lambda

log10([deg])
log10([deg])
meter

Statistical properties of the azimuth of arrival spread at the receiver.

ES A mu
ES A sigma
ES A lambda

log10([deg])
log10([deg])
meter

Statistical properties of the elevation of arrival spread at the receiver.

AS D mu
AS D sigma
AS D lambda

log10([deg])
log10([deg])
meter

Statistical properties of the azimuth of departure spread at the transmitter.

ES D mu
ES D sigma
ES D lambda

log10([deg])
log10([deg])
meter

Statistical properties of the elevation of departure spread at the transmitter.

Cross correlations There are interdependencies between parameters. For example, if the K-Factor
is high, the delay spread gets shorter since more power is coming from the direct
component. This is expressed by the cross-correlations parameters. They can vary
between -1 and 1. Negative values denote inverse correlation, e.g. a high K-Factor
implies a low delay spread. Positive Value implies a positive correlation such as
a high K-Factor also implies a high shadow fading. Cross-Correlations are used
during the map-generation.

ds kf Correlation of delay spread and K-Factor.
asA ds Correlation of delay spread and azimuth of arrival angle spread.
esA ds Correlation of delay spread and elevation of arrival angle spread.
ds sf Correlation of delay spread and shadow fading.
asA kf Correlation of K-Factor and azimuth of arrival angle spread.
esA kf Correlation of K-Factor and elevation of arrival angle spread.
sf kf Correlation of K-Factor and shadow fading.
esA asA Correlation elevation of arrival angle spread and azimuth of arrival angle spread.
asA sf Correlation of shadow fading and azimuth of arrival angle spread.
esA sf Correlation of shadow fading and elevation of arrival angle spread.

Cluster Parameter Those parameters influence the generation of the scattering-clusters and the dis-
tribution of the sub-paths within each cluster.

NumClusters Integer The number of clusters generated. For multipath rich environments typically more
clusters are used. If the LOS component is dominant a lower number of clusters
is sufficient.

PerCluster
AS A

deg The azimuth angular spread of the 20 sub-paths within one cluster.

PerCluster
ES A

deg The elevation angular spread of the 20 sub-paths within one cluster.

LOS scatter radius meter This parameter allows an additional spread of the 20 sub-paths of the LOS compo-
nent by emulating scattering in the near-field of the antennas. [EXPERIMENTAL]

LNS ksi Normally, cluster powers are taken from an exponential power-delay-profile. This
parameter enables an additional variation of the individual cluster powers around
the PDP.

r DS This parameter allows the mapping of delay-spreads to delays and powers for the
clusters. See section 3.2.

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

53

QuaDRiGa v1.2.32-458 2 SOFTWARE STRUCTURE

2.4.2 Adding New Scenarios

The scenario parameters are set in ”parameter set.scenpar”. Here, you also have the option to change
individual parameters by assigning new values. The scenario ”UMal”, for example, uses by default 8
clusters. When the simulations should be done with 15 clusters, one can change the settings by

1 p = parameter_set(’BERLIN_UMa_LOS ’); % New parameter set

2 p.scenpar.NumClusters = 15; % Set new number of clusters

A list of currently supported scenarios is generated by:

1 parameter_set.supported_scenarios

The default settings of those scenarios are stored in config files which are located in the ”config”-folder of
the QuaDRiGa source path. The ”UMal” config file for example looks like this:

1 % Config File for scenario "UMal"

2 % WINNER+ Urban Macro LOS

3 % See: CELTIC / CP5 -026 D5 .3: WINNER+ Final Channel Models

4 % and: IST -4 -027756 WINNER II D1 .1.2 v.1.1: WINNER II Channel Models

5 %

6 % Stephan Jaeckel

7 % Fraunhofer Heinrich Hertz Institute

8 % Wireless Communication and Networks

9 % Einsteinufer 37, 10587 Berlin , Germany

10 % e-mail: stephan. jaeckel@hhi . fraunhofer .de

11

12 NumClusters = 8

13 r_DS = 2.5

14

15 SF_sigma = 5

16 SF_lambda = 45

17 LNS_ksi = 3

18

19 KF_mu = 7

20 KF_sigma = 3

21 KF_lambda = 12

22

23 DS_mu = -7.39

24 DS_sigma = 0.63

25 DS_lambda = 40

26

27 AS_D_mu = 1

28 AS_D_sigma = 0.25

29 AS_D_lambda = 15

30 PerClusterAS_D = 6

31

32 AS_A_mu = 1.7

33 AS_A_sigma = 0.19

34 AS_A_lambda = 15

35 PerClusterAS_A = 12

36

37 ES_D_mu = 0.7

38 ES_D_sigma = 0.2

39 ES_D_lambda = 15 % D5.3 pp. 73

40 PerClusterES_D = 3

41

42 ES_A_mu = 0.95

43 ES_A_sigma = 0.16

44 ES_A_lambda = 15 % D5.3 pp. 73

45 PerClusterES_A = 7

46

47 xpr_mu = 8

48 xpr_sigma = 4

49

50 % Adjustments have been made to keep xcorr -matrix positive definite

51 asD_ds = 0.4

52 asA_ds = 0.7 % 0.8

53 asA_sf = -0.5

54 asD_sf = -0.4 % 0.5

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

54

QuaDRiGa v1.2.32-458 2 SOFTWARE STRUCTURE

55 ds_sf = -0.4

56 asD_asA = 0.3

57 asD_kf = 0.1

58 asA_kf = -0.2

59 ds_kf = -0.4

60 sf_kf = 0.3

61 esD_ds = -0.4 % -0.5

62 esD_asD = 0.4 % 0.5

63 esA_sf = -0.8

64 esA_asA = 0.4

65

66 % A * log10 d + B + C * log10 f + D * log10 hBS + E * log10 hMS

67 % Two different values (first before breakpoint , last after breakpoint)

68 % Different SF coefficients

69

70 PL_model = winner_los

71

72 PL_A1 = 26

73 PL_B1 = 25

74 PL_C1 = 20

75 PL_D1 = 0

76 PL_E1 = 0

77 PL_sig1 = 4

78

79 PL_A2 = 40

80 PL_B2 = 9.27

81 PL_C2 = 6

82 PL_D2 = -14

83 PL_E2 = -14

84 PL_sig2 = 6

You can create you own scenario by editing this file and saving it under a new filename in the ”config”-
Folder. The file ending must be ”.conf”. The filename then is also the scenario name and the settings can
be accessed from inside MATLAB as described above.

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

55

QuaDRiGa v1.2.32-458 3 TECHNICAL DOCUMENTATION

3 Technical Documentation

This chapter describes an extension of the WINNER model [3] where time evolution based on the ideas
presented in [7] and [8] is incorporated. A reference implementation in MATLAB is available as open source
[9]. The modeling approach consists of two steps: A stochastic part generates LSPs and calculates random
three-dimensional (3-D) positions of scattering clusters. It is assumed that the base station (BS) is fixed and
the mobile terminal (MT) is moving. In this case, scattering clusters are fixed as well and the time evolution
of the radio channel is deterministic. Different positions of the MT lead to different arrival angles, delays,
and phases for each multipath component (MPC). Longer sequences are generated by transitions between
channel traces from consecutive initializations of the model. This allows the MTs to traverse different
scenarios, e.g., move from indoors to outdoors.

Figure 5 gives an overview of the modeling steps. The user needs to configure the network layout (i.e., the
positions of the BSs, antenna configurations, downtilts), the positions and trajectories of the MTs, and the
propagation scenarios. The channel coefficients are then calculated in seven steps, which are described in
detail in Sections 3.1 to 3.8. Major extensions concerning 3-D propagation are made in steps C and D. Time
evolution is incorporated in steps D and G, and a new 3-D model of the polarization [10] is introduced in
step E. In order to integrate these extensions, some changes are made in the other parts of the model as
well.

Input variables:
 - network layout
 - terminal trajectories
 - propagation scenario
 - antenna patterns

A. Calculation of
correlated large scale

parameter maps

C. Calculation of
departure and
arrival angles

B. Calculation of
initial delays and

path powers

D. Drifting of delays,
angles, and phases

over a short segment

E. Calculation of
polarized channel

coefficients

G. Transitions
between segments

F. Application of
path gain, shadow

fading and K-Factor

Postprocessing / Analysis

Figure 5: Steps for the calculation of time-evolving channel coefficients. Compared to the WINNER model,
changes were made in the gray shaded boxes.

Time evolution requires a more detailed description of the mobility of the terminals. This is done by assigning
tracks, i.e., ordered lists of positions, to each MT. In reality, this may include accelerations, decelerations,
and MTs with different speeds, e.g., pedestrian and vehicular users. However, to minimize the computational
overhead and memory requirements, channel coefficients are calculated at a constant sample rate that fulfills
the sampling theorem

fT ≥ 2 ·BD = 4 ·max |∆fD| = 4 · max |v|
λc

, (3)

where BD is the width of the Doppler spectrum, ∆fD is the maximum frequency change due to the velocity
v, and λc is the carrier wavelength. Thus, the appropriate sampling rate is proportional to the maximum
speed of the MT. Since it is sometimes useful to examine algorithms at different speeds, it is unfortunate
to fix the sampling rate in advance as the speed is then fixed as well. To overcome this problem, channel
coefficients are now calculated at fixed positions with a sampling rate fS measured in samples per meter.
In its normalized form, it is known as sample density (SD). A time-series for arbitrary or varying speeds is

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

56

QuaDRiGa v1.2.32-458 3 TECHNICAL DOCUMENTATION

then obtained by interpolating the coefficients in a postprocessing step.

fS =
fT

max |v|
≥ 4

λc
(4)

SD =
fS
λc/2

≥ 2 (5)

Longer time-evolving channel sequences need to consider the birth and death of scattering clusters as well
as transitions between different propagation environments. This is addressed by splitting the MT trajectory
into segments. A segment can be seen as an interval in which the LSPs do not change considerably and
where the channel keeps its wide sense stationary (WSS) properties. Thus, the length of a segment depends
on the decorrelation distances of the LSPs. Hence, it might be beneficial to limit the segment length to the
average decorrelation distance. In the WINNER urban macro-cell (UMa) scenario, this would be 22 m for
LOS and 48 m for NLOS propagation. Channel traces are then generated independently for each segment.
In Section 3.8 on Page 73, those individual traces are combined into a longer sequence that includes the
birth and death of scattering clusters.

3.1 Correlated Large-Scale Parameter Maps

The positions of the scattering clusters are based on seven LSPs:

1. RMS delay spread (DS)
2. Ricean K-factor (KF)
3. Shadow fading (SF)
4. Azimuth spread of departure (ASD)
5. Azimuth spread of arrival (ASA)
6. Elevation spread of departure (ESD)
7. Elevation spread of arrival (ESA)

Their distribution properties are directly obtained from measurement data (e.g., [3–6, 11]). If some MTs or
segments are close to each other, their LSPs will be correlated and they will experience similar propagation
conditions. This is modeled by means of two-dimensional (2-D) maps, as illustrated in Figure 6. Our
method for generating these maps is adopted from [12]. The maps are initialized with values obtained
from an independent and identically distributed (i.i.d.) zero-mean Gaussian random process with desired
variance. The pixels are then subsequently filtered to obtain the desired autocorrelation function, i.e., a
decaying exponential function with a specific decorrelation distance. In contrast to [12], the maps are filtered
also in the diagonal direction to get a smooth evolution of the values along the MT trajectory. Advanced
methods going beyond this approach for generating such maps are discussed in [13]. Once the maps are
generated, initial LSPs for each segment are obtained by interpolating the maps to match the exact position
of the MT.

The granularity of each LSP can be described on three levels: the propagation scenario level, the link level
and the path level:

• Propagation scenario level:
The magnitude, variance and the correlation of a LSP in a specific scenario, e.g., urban macro-cell,
indoor hotspot, or urban satellite, are calculated from measurement data. Normally, LSPs are assumed
to be log-normal distributed. For example, the median log-normal delay spread DSµ in an urban
cellular scenario is −6.89 which corresponds to a DS of στ = 128 ns. With a standard deviation of
DSσ = 0.5, typical values may lie in between 40 and 407 ns. The same principle applies for the other
six LSPs. The decorrelation distance (e.g. DSλ = 40 m) describes the distance-dependent correlation
of the LSP. If e.g. two mobile terminals in the above example are 40 m apart of each other, their DS is
correlated with a correlation coefficient of e−1 = 0.37. Additionally, all LSPs are cross correlated. A

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

57

QuaDRiGa v1.2.32-458 3 TECHNICAL DOCUMENTATION

Parameter maps

0 200 4000

Delay [ns]

Initial delays and cluster powers

.4

.2

.6

600

N
or

m
. p

ow
er

Local values for an
individual MT position

...
Linear transformation to impose

inter-parameter correlation

BDS...

BESD
=

ADS...

AESD

c11 c17

...

...

c71 c77

...

...
...

...

White Gaussian
noise generator

2D autocorrelation
shaping

Figure 6: Principle of the generation of channel coefficients based on correlated LSPs

typical example is the dependance of the angular spread (AS), e.g., the azimuth spread of arrival on
the Ricean K-factor (KF). With a large KF (e.g. 10 dB), a significant amount of energy comes from a
single direction. Thus, the AS gets smaller which leads to a negative correlation between the DS and
the KF.

• Link level:
A user terminal at a specific position (black dot on the map in Figure 6) is assigned to a propagation
scenario. Depending on the position and the scenario, it experiences a radio channel which is deter-
mined by the specific values of the seven LSPs. Due to the autocorrelation properties, small distances
between users in the same scenario also lead to high correlations in the channel statistics, e.g., a second
terminal right next to the current user will experience a similar DS. The second granularity level thus
contains the specific values of the LSPs for each user position. Generating those values can be seen as
going backwards from the scenario-wide distribution µ, σ of a LSP to individual “measurement”-values
for each MT.

• Path Level:
Last, the individual components of the CIR are calculated. This procedure takes the values of the
LSPs into account and calculates the power and the delay of the channel coefficients. The detailed
procedure for this is described in the following sections.

The correlation maps are generated at a fixed sampling grid by successively filtering a random, normal
distributed sequence of numbers with a finite impulse response (FIR) filter. The principle is depicted in
Figure 7. The map is represented by a matrix B and one pixel of that matrix is By,x where y is the row
index and x is the column index. The first pixel B1,1 is in the top left (or north-west) corner of the map. The
FIR filter coefficients are calculated from the decorrelation distance dλ (in units of meters). The distance
dependent correlation coefficient follows an exponential function

ρ(d) = exp

(
− d

dλ

)
(6)

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

58

QuaDRiGa v1.2.32-458 3 TECHNICAL DOCUMENTATION

with d as the distance between two positions [14]. We now calculate two sets of filter coefficients, one for
the horizontal and vertical directions, and one for the diagonal elements. This is done by taking (6) and
substituting the distance d by the relative distance dpx of two pixels.

ak =
1√
dλ
· exp

(
−k · dpx

dλ

)
(7)

bk =
1√
dλ
· exp

(
−k ·

√
2 · dpx

dλ

)
(8)

k is the running filter coefficient index. The exponential decay function is cutted at a maximum distance of
4 ·dλ and normalized with

√
dλ. The map size is therefore determined by the distribution of the users in the

scenario plus the length of the filter function. This is also illustrated in Figure 7 where the user terminals
are placed inside the black square. The extension space is needed to avoid filter artifacts at the edges of the
map. The map is initialized with random, normal distributed numbers. Then, the filter (7) is applied in
vertical direction (running from top to bottom) and in horizontal direction (from left to right).

B[1]
y,x = X with X ∼ N(0, 1) (9)

B[2]
y,x =

x4·dλ/dpxy∑
k=0

ak ·By−k,x (10)

B[3]
y,x =

x4·dλ/dpxy∑
k=0

ak ·By,x−k (11)

Next, the second filter (8) is applied on the diagonals of the map - at first from the top left to the bottom
right, and then from the bottom left to the top right.

B[4]
y,x =

x4·dλ/dpxy∑
k=0

bk ·By−k,x−k (12)

B[5]
y,x =

x4·dλ/dpxy∑
k=0

bk ·By+k,x−k (13)

After the 2-D autocorrelation shaping is done, the extension space is removed and values of the remaining
map are scaled to have the desired distribution µ, σ. The same procedure is repeated for all seven LSPs.
However, the decorrelation distance dλ as well as µ, σ for each LSP can be different.

20 40 60 80 100 120

20

40

60

80

100

120

140

20 40 60 80 100 120

20

40

120

140

20 40 60 80 100 120

40

60

80

100

120

140

60 80 100 120

20

40

60

80

100

20 40 60 80 100 120

20

40

60

80

100

120

140

Area
containing

user
positions

Filter

4 dλ

a

Filtera

Filter
b

Filter
b

Figure 7: Map-based 2-D autocorrelation shaping using FIR filters

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

59

QuaDRiGa v1.2.32-458 3 TECHNICAL DOCUMENTATION

In order to account for the inter-LSP correlation, a matrix X is assembled containing all cross-correlation
values ρ between each two LSPs.

X =

1 ρDS,KF ρDS,SF ρDS,ASD ρDS,ASA ρDS,ESD ρDS,ESA

ρKF,DS 1 ρKF,SF ρKF,ASD ρKF,ASA ρKF,ESD ρKF,ESA

ρSF,DS ρSF,KF 1 ρSF,ASD ρSF,ASA ρSF,ESD ρSF,ESA

ρASD,DS ρASD,KF ρASD,SF 1 ρASD,ASA ρASD,ESD ρASD,ESA

ρASA,DS ρASA,KF ρASA,SF ρASA,ASD 1 ρASA,ESD ρASA,ESA

ρESD,DS ρESD,KF ρESD,SF ρESD,ASD ρESD,ASA 1 ρESD,ESA

ρESA,DS ρESA,KF ρESA,SF ρESA,ASD ρESA,ASA ρESA,ESD 1

(14)

The matrix-square-root X1/2 of this matrix is multiplied with the values of the seven LSP maps BDS . . .BESD.
In order to calculate the matrix-square-root, X must be positive definite to get a unique, real numbered
solution. By,x,DS

...
By,x,EsD

 = X1/2

B

[5]
y,x,DS

...

B
[5]
y,x,EsD

 (15)

Last, the MTs are placed on the maps and the corresponding values for the LSPs are obtained by interpo-
lating the surrounding pixels of the map. In this way, initial LSPs for the following parts of the channel
model are generated.

3.2 Initial Delays and Path Powers

Initial delays are drawn randomly from a scenario-dependent delay distribution as

τ
[1]
l = −rτστ ln(X l), (16)

where X l ∼ U(0, 1) is an uniformly distributed random variable having values between 0 and 1, στ is the
initial DS from the map and rτ is a proportionality factor (see [3]). The term rτ was introduced in [15]
because στ is influenced by both the delays τ l and the powers P l; rτ is usually calculated from measurement
data. Next, the delays are normalized such that the first delay is zero and then they are sorted:

τ
[2]
l = sort

{
τ

[1]
l −min

(
τ

[1]
l

)}
. (17)

The NLOS path powers are drawn from a single slope exponential power delay profile (PDP) depending
on the DS στ and a random component Z l ∼ N (0, ζ2) [3]. The term ζ is a scenario-dependent coefficient
emulating an additional shadowing process. It is obtained from measurements.

P
[1]
l = exp

(
−τ l

rτ − 1

rτ · στ

)
· 10

−Zl
10 (18)

The power of the first path is further scaled according to the initial KF from the map and path powers are
normalized so that their sum power is one:

P
[2]
1 = K

L∑
l=2

P
[1]
l (19)

P
[2]
2...l = P

[1]
2...l (20)

P l = P
[2]
l /

L∑
l=1

P
[2]
l . (21)

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

60

QuaDRiGa v1.2.32-458 3 TECHNICAL DOCUMENTATION

The scaling of the powers with the KF changes the DS. Hence, in the last step, this is corrected by calculating
the actual delay spread using the scaled powers and normalizing the delays in order to obtain the desired
RMS delay spread in the PDP. The DS after applying (21) is calculated to

στ
[actual] =

√√√√ L∑
l=1

P l · τ2
l −

(
L∑
l=1

P l · τ l

)2

(22)

With στ being the initial DS from the map, path delays note

τ l =
στ

στ [actual]
· τ [2]

l (23)

3.3 Departure and Arrival Angles

Four angles are calculated for each propagation path. The 2-D WINNER model [3] introduced the azimuth
angle of departure (AoD), φd, and the azimuth angle of arrival (AoA), φa. In 3-D coordinates, we also
need the elevation angle of departure (EoD), θd, and the elevation angle of arrival (EoA), θa. The angles
share similar calculation methods but have different ASs σφa , σφd , σθa , and σθd . The individual angles are
generated by first drawing random angles which are assigned to the already known path powers. In order
to obtain the correct ASs, a scaling operations is used that readjusts the angles. This approach is different
from the WINNER model, where the angels are mapped to the already known powers using a wrapped
Gaussian distribution [3, 16]. A summary of the WINNER method together with a description of how it
can be used in the new model is given in Appendix B.

Azimuth angles Here, the calculation method for the azimuth angles is described. The same calculation
method is used for the AoD and the AoA. Hence, φ is used instead of φd or φa. Likewise, the corresponding
AS is denoted as σφ.

At first, a random list of angles is created for the NLOS paths only, following a Gaussian normal distribution
with zero-mean and a variance corresponding to the given AS from the LSP maps. The LOS angle is defined
to be 0.

φ
[1]
1 = 0 and φ

[1]
2...L ∼ N (0, σ2

φ) (24)

The so obtained angels need to be mapped to the interval [−π;π]. This is done by a modulo operation
which wraps the angles around the unit circle.

φ
[2]
l =

(
φ

[1]
l + π mod 2π

)
− π. (25)

The relationship between path powers and angles is random. Hence, the resulting AS is undefined. In the
next step, the actual AS is calculated. This requires to calculate the power-weighted mean angle φ̄. This

angle is subtracted from the angles φ
[2]
l and the wrapping around the unit circle is applied a second time.

The AS then follows from:

φ̄ = arg

(
L∑
l=1

Pl · exp
(
jφ

[2]
l

))
(26)

φ
[∗]
l =

(
φ

[2]
l − φ̄+ π mod 2π

)
− π (27)

σ
[actual]
φ =

√√√√ L∑
l=1

Pl ·
(
φ

[∗]
l

)2
−

(
L∑
l=1

Pl · φ
[∗]
l

)2

(28)

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

61

QuaDRiGa v1.2.32-458 3 TECHNICAL DOCUMENTATION

Now, with σφ being the initial AS from the map, the angles φ
[2]
l are updated:

φ
[3]
l =

σφ

σ
[actual]
φ

· φ[2]
l (29)

If σφ is larger than σ
[actual]
φ , then (25) needs to be applied again in order for account for the periodicity of

the angles. However, in this case, some of the angles could be mapped to values around 0°. This could lower
the AS instead of increasing it as intended by the scaling operation. A solution is to create new angles with
a bias to the negative side of the circle.

φ
[4]
l =

{
φ

[3]
l , if |φ[3]

l | < π;

N (π, π
2

4), otherwise.
(30)

φ
[5]
l =

(
φ

[4]
l + π mod 2π

)
− π (31)

This, however, changes the AS and the calculations (26) to (31) need to be repeated iteratively until the

actual AS σ
[actual]
φ converges either to the given value σφ or a maximum value. Finally, the LOS direction is

applied.

φl = φ
[5]
l + φLOS (32)

Elevation angles Since the elevation angles can only have values in between −π
2 and π

2 , the calculation
method differers slightly from the method used for the azimuth angles. Again, the same method is used for
the EoD and the EoA. Hence, θ is used instead of θd or θa. Likewise, the corresponding AS is denoted as
σθ.

As for the azimuth angles, a random list of angles is created for the NLOS paths only, following a Gaussian
normal distribution with zero-mean and a variance corresponding to the given AS from the LSP maps. The
LOS angle is defined to be 0.

θ
[1]
1 = 0 and θ

[1]
2...L ∼ N (0, σ2

θ) (33)

Next, the LOS direction is applied. This makes sure that the departure and arrival elevation are spread
around the LOS path.

θ
[2]
l = θ

[1]
l + θLOS (34)

The so obtained angels need to be mapped to the interval [−π
2 ; π2]. This is done by a modulo operation

which wraps the angles around the unit circle and an additional operation that mirrors the angles at the
poles of the unit sphere, e.g. an elevation angle of 91° is mapped to 89°, 92° to 88°, and so on. This ensures
that the already known azimuth angles are not changed.

θ
[3]
l =

(
θ

[2]
l + π mod 2π

)
− π (35)

θ
[4]
l =

π − θ[3]

l , if θ
[3]
l > π

2 ;

θ
[3]
l − π, if θ

[3]
l < −π

2 ;

θ
[3]
l , otherwise.

(36)

As for the azimuth angles, the resulting AS is undefined. Hence, we calculate the actual elevation spread

σ
[actual]
θ using equations (26), (27), and (28). Then, with σθ being the initial elevation spread from the map,

the angles θ
[4]
l are updated. Since the angles should be distributed around the LOS direction, we need to

subtract θLOS before scaling the angles and add it again after scaling them.

θ
[5]
l =

σθ

σ
[actual]
θ

·
(
θ

[4]
l − θ

LOS
)

+ θLOS (37)

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

62

QuaDRiGa v1.2.32-458 3 TECHNICAL DOCUMENTATION

This update, however, might shift some angles outside the allowed interval, especially if there is already a
strong bias due to the LOS path which might happen e.g. in satellite scenarios when the satellite has a high
elevation. Hence, angles outside the allowed range are replaced with

θ
[6]
l =

N (π2 ,

π2

8) if θ
[5]
l > π

2 ;

N (−π
2 ,

π2

8) if θ
[5]
l < π

2 ;

θ
[5]
l otherwise.

(38)

As for the azimuth angles, equations (35) to (38) must be applied in an iterative fashion until σ
[actual]
θ

converges either to the given value σθ or a maximum value.

Maximal achievable angular spread As already mentioned, there is a upper limit for the AS due to the
wrapping around the unit circle. For two equally strong paths the maximum azimuth spread is achieved
when the paths face opposite directions. Hence, in order for (26) to be zero, the two angles must be π

2

and −π
2 . In this case, the AS (28) becomes π/

√
2 ≈ 127°. For three paths, the maximum azimuth spread

would be 170°, and for four paths 220°. With increasing KF, however, the maximum AS decreases since
more power is allocated to the LOS path. For example, with a KF of 10 dB, the maximum azimuth spread
is only 57°. However, if the angles are mapped randomly to the path powers, the realistically achievable
ASs are lower. Figure 8 shows simulation results for the maximum AS depending on the KF. For NLOS
propagation, the achievable azimuth spread is around 100°, and the elevation spread is around 65°. When
the requested AS is larger than the maximum angle, then the angles are adjusted in a way that the AS at
the output of the model is close to the maximum AS. This is illustrated in the right part of Figure 8.

K-Factor [dB]

M
ax

. s
ng

ul
ar

 s
pr

ea
d

[d
eg

]

-20 -15 -10 -5 0 5 10 15 20
0

20

40

60

80

100

120

Azimuth spread
Elevation spread

KF:
-6 dB
6 dB

0 dB

6 dB

El. -6 dB Az. 6 dB

Requested angular spread [deg]

A
ng

ul
ar

 s
pr

ea
d

in
 d

at
a

[d
eg

]

0 20 40 60 80 100 120
0

20

40

60

80

100

120
Unity
Azimuth spread
Elevation spread

Figure 8: Maximal achievable angular spread depending on the K-factor

Subpaths Finally, the NLOS paths are split into 20 sub-paths to emulate intra-cluster ASs. The LOS path
has no sub-paths.

φl,m = φl +
π · cφ · φ̂m

180°
, for l > 1; (39)

θl,m = θl +
π · cθ · φ̂m

180°
, for l > 1. (40)

Here, m is the sub-path index, cφ is the scenario-dependent cluster-wise RMS AS and φ̂ is the offset angle of

the mth sub-path from Table 11. cφ and φ̂ are given in degrees here. Furthermore, each of the 20 angle pairs
(θdl,m, φ

d
l,m) at the transmitter (Tx) gets coupled with a random angle pair (θal,m, φ

a
l,m) at the receiver

(Rx) (see [3]).

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

63

QuaDRiGa v1.2.32-458 3 TECHNICAL DOCUMENTATION

Table 11: Offset Angle of the mth Sub-Path from [3]

Sub-path Offset angle Sub-path Offset angle

m φ̂m (degrees) m φ̂m (degrees)
1,2 ± 0.0447 11,12 ± 0.6797
3,4 ± 0.1413 13,14 ± 0.8844
5,6 ± 0.2492 15,16 ± 1.1481
7,8 ± 0.3715 17,18 ± 1.5195
9,10 ± 0.5129 19,20 ± 2.1551

3.4 Drifting

After the path-delays, powers, and angles are known for the initial position, their values are updated for
each snapshot of the segment. Thus, we get an evolution of the path-parameters over a short time interval.
Drifting for 2-D propagation was already introduced in an extension of the SCM [8]. However, it was not
incorporated into the WINNER model and no evaluation was reported. Here, this idea is extended towards
3-D propagation to incorporate time evolution into the new model.

Besides the initial delays, path-powers, and angles, drifting requires the exact position of each antenna
element. At the MT, element positions need to be updated for each snapshot with respect to the MT
orientation. The following calculations are then done element-wise. The indices r, t, l,m, s denote the index
of the Rx antenna element (r) and the Tx antenna element (t), the path number (l), the sub-path number
(m), and the snapshot number (s) within the current segment, respectively.

The scatterer positions are kept fixed for the time it takes a MT to move through a segment. Hence, the
angles (θd, φd) seen from the BS do not change except for the LOS angle, which is treated separately. Based
on this assumption, the angles (θa, φa) as well as the path delay only change with respect to the last-bounce
scatterer (LBS). Hence, if the BS array size is small compared to the BS-MT distance, it is sufficient to
consider only a single scatterer (the last-bounce scatterer (LBS)) for the NLOS paths.

last-bounce scatterer

initial Rx location

Tx location Rx location at snapshot s

M
T

tra
ck

ar,l,m,s er,s

al,m

bl,m

r

rr,s

αl,m

Figure 9: Illustration of the calculation of the scatterer positions and updates of the arrival angles

NLOS drifting The position of the LBS is calculated based on the initial arrival angles and the path delays.
Then, the angles and path lengths between the LBS and the terminal are updated for each snapshot on the
track. This is done for each antenna element separately. Figure 9 illustrates the angles and their relations.
The first delay is always zero due to (17). Hence, the total length of the lth path is

dl = τ l · c+ |r| , (41)

where |r| is the distance between the Tx and the initial Rx location, and c is the speed of light. All sub-paths
have the same delay and thus the same path length. However, each sub-path has different arrival angles

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

64

QuaDRiGa v1.2.32-458 3 TECHNICAL DOCUMENTATION

(θal,m, φ
a
l,m). Those angles are transformed into Cartesian coordinates to obtain

âl,m =

 cosφal,m · cos θal,m
sinφal,m · cos θal,m

sin θal,m

 =
al,m
|al,m|

. (42)

This vector has unit length and points from the initial Rx position towards the scatterer. Next, the length
of the vector |al,m| is obtained. Since the drifting at the MT is modeled by a single reflection, Tx, Rx, and
LBS form a triangle. We know dl, r, and âl,m and can thus apply the cosine theorem to calculate the length
|al,m| between the Rx and LBS

|bl,m|2 = |r|2 + |al,m|2 − 2 |r| |al,m| cosαl,m (43)

(dl − |al,m|)2 = |r|2 + |al,m|2 + 2 |al,m| rT âl,m (44)

|al,m| =
d2
l − |r|

2

2 · (dl + rT âl,m)
(45)

In (44), the term cosαl,m is substituted with −rT âl,m/|r| since we need the angle between al,m and −r, the
vector pointing from the Rx position towards the Tx. Now we can calculate the vector ar,l,m,s for the Rx
antenna element r at snapshot s. The element position includes the orientation of the antenna array with
respect to the moving direction of the Rx. Hence, the vector er,s points from the initial Rx location to the
rth antenna element at snapshot s.

ar,l,m,s = al,m − er,s (46)

We obtain an update of the arrival angles by transforming ar,l,m,s back to spherical coordinates.

φar,l,m,s = arctan2 {ar,l,m,s,y, ar,l,m,s,x} (47)

θar,l,m,s = arcsin

{
ar,l,m,s,z
|ar,l,m,s|

}
(48)

Since we assume a static scattering environment, we use the same departure angles for all Tx elements. The
phases and path delays, however, depend on the total path length dr,t,l,m,s. To obtain this value, we need
to calculate the vector bl,m from the vectors r and al,m at r = s = 1.

bl,m = r + al,m (49)

dr,l,m,s = |bl,m|+ |ar,l,m,s| (50)

Finally, we calculate the phases ψ and path delays τ .

ψr,l,m,s =
2π

λ
· (dr,l,m,s mod λ) (51)

τ r,l,s =
1

20 · c

20∑
m=1

dr,l,m,s (52)

LOS drifting The direct component is handled differently, since we have to update the angles at both the
Tx and the Rx sides. The angles are updated for each combination of Tx-Rx antenna elements based on
the position of the element in 3-D coordinates.

rr,t,s = r− et + er,s (53)

φdt,1,s = arctan2 {rr,t,s,y, rr,t,s,x} (54)

θdt,1,s = arcsin

{
rr,t,s,z
|rr,t,s|

}
(55)

φar,1,s = arctan2 {−rr,t,s,y,−rr,t,s,x} (56)

θar,1,s = arcsin

{
−rr,t,s,z
|rr,t,s|

}
(57)

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

65

QuaDRiGa v1.2.32-458 3 TECHNICAL DOCUMENTATION

The vector rr,t,s points from the location of the Tx element t to the location of the Rx element r at snapshot
s. The phases and delays are determined by the length of this vector and are calculated using (51) and (52)
where dr,l,m,s is replaced by |rr,t,s|.

3.5 Antennas and Polarization

Next, antenna patterns, polarization, and phases are combined in order to calculate initial channel coefficients
for each snapshot of a segment. The antennas patterns are defined in spherical coordinates (Az-over-El)
with a polar-spherical polarization basis (see [17]).

F(θ, φ) =

(
F [θ](θ, φ)

F [φ](θ, φ)

)
(58)

The coordinate system has two angles and two poles. The elevation angle θ is measured relative to the pole
axis. A complete circle will go through each of the two poles, similar to the longitude coordinate in the
world geodetic system (WGS). The azimuth angle φ moves around the pole, similar to the latitude in WGS.
The electric field is resolved onto a polar-spherical polarization basis. The first component of the radiated
field F [θ] represents the case where the “probe”, i.e., the reference antenna which is used to measure the
pattern, is polarized in θ direction. Likewise, for the second component, F [φ], the probe is polarized in φ
direction.

The channel model requires the directional antenna gains from both the Tx and Rx antennas at the pre-
viously calculated departure and arrival angles. If, in practice, F(θ, φ) is sampled once per degree in both,
azimuth and elevation direction, interpolation is needed in order to obtain the exact antenna response
F(θr,l,m,s, φr,l,m,s). The initial channel coefficient then notes

g
[1]
r,t,l,m,s = Fr(θ

a
r,l,m,s, φ

a
r,l,m,s)

T ·Mr,t,l,m,s · Ft(θ
d
t,l,m,s, φ

d
t,l,m,s). (59)

The polarization is changed along the propagation path. This is captured by the matrix M. The SCM,
WINNER, and COST models use random coefficients to handle polarization effects.

M =

(
Zvv

√
1/XPRh · Zvh√

1/XPRv · Zhv Zhh

)
, (60)

where Z ∼ exp {j · U(−π, π)} is a random phase component. However, this does not account for all effects
contributing to the polarization state of a MIMO radio link. Thus, a different method for calculating M
based on linear transformations is proposed in the following.

3.5.1 Relation between the Polarization Model and the Jones Calculus

Jones invented a simple method to calculate polarization effects in optics [18]. In his work, he described the
polarization state of a ray of light by the so-called Jones vector. Any object that changes the polarization (or
the intensity) of the light is represented by a 2x2 Jones matrix. It was found that the product of the Jones
matrix of the optical element and the Jones vector of the incident light accurately describes the polarization
state of the resulting ray. Generally, this calculus can be used for any electromagnetic wave. It is especially
interesting for the SCM and WINNER models where the paths are handled similarly like optical rays.

In the Jones calculus, the Jones vector contains the x and y components of the amplitude and phase of the
electric field traveling in z-direction. (

Ex(t)
Ey(t)

)
= ejωt ·

(
Axe

jεx

Aye
jεy

)
︸ ︷︷ ︸

Jones vector

(61)

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

66

QuaDRiGa v1.2.32-458 3 TECHNICAL DOCUMENTATION

-10-10 -5
0

5
10

-5

0
5

10
0

2

4

X-Position [m]

Y-Position [m]

H
ei

gh
t

E N W S E
Position on circle

N
or

m
al

iz
ed

 r
ec

ei
ve

d
po

we
r

0
.2

.4

.6

.8
1

Received power along the track

Old model
New model

E
N

W
S

Simulation
scenario

Transmitter position
Receiver start position
Movement track

Figure 10: Example showing the effect of the new polarization rotation method

The same expression is found in the antenna pattern (58) of the WINNER model where the complex value
Aye

jεy from the Jones vector can be identified with the (generally also complex-valued) component F [θ](θ, φ)
of the antenna pattern. Likewise, Axe

jεx can be identified with F [φ](θ, φ). This implies that the polarization
coupling matrix M in (59) is a Jones matrix and that the Jones calculus could apply also to the WINNER
model.

In general, M can be seen as a transformation operation that maps the incoming signal on the polarization
plane to an outgoing signal. If the coefficients are real valued, then linear transformations - such as rotation,
scaling, shearing, reflection, and orthogonal projection as well as combinations of those operations - are
possible. If the coefficients are complex valued, then the matrix shows characteristics of a Möbius transfor-
mation. Such transformations can map straight lines to straight lines or circles and vice versa. Since the
Jones calculus allows the use of complex coefficients, it can transform linear polarized signals into circular
or elliptical polarized signals and elliptical polarized signals to linear polarized signals. This implies that
using (60) with complex coefficients results in a completely random polarization behavior when XPRv and
XPRh are small (i.e., when the off-diagonal elements are large). When XPRv,h is large (and the off-diagonal
elements are close to zero), then (60) describes a scaling operation.

Here, a different method to model the polarization based on a combination of linear transformations is
proposed. In the following, M will be calculated explicitly for the LOS component, taking the orientation of
the antennas into account. For the NLOS components, additional operations are used to convert the XPR
value from the parameter tables into Jones matrices for the linear and elliptical polarization component.

An example showing the effect of the new method is depicted in Figure 10. The upper part shows the
model setup and the lower part the results. Both, the transmitter and the receiver are equipped with
dipole antennas that were initially slanted by 45° around the y-axis. The transmitter is placed 5 m above
ground and 5 m north of the center. The receiver moves counterclockwise around the transmitter with its

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

67

QuaDRiGa v1.2.32-458 3 TECHNICAL DOCUMENTATION

antenna orientation changing in accordance with the movement direction. The orientations of transmitter
and receiver (including the movement direction) are indicated by the arrows. The lower figure shows the
LOS power along the track. The dashed curve comes from the WINNER approach. The new model (solid
line) calculates the change of the polarization due to the antenna orientation and adjusts the polarization
accordingly.

3.5.2 Changing the Orientation of Antennas

Orientation changes are desirable in many cases, e.g., when tilting BS arrays or changing the orientation of
mobile terminals. An example is depicted in Figure 11. The left side of the figure shows a dipole pattern
that has only a vertical component and is in line with the global coordinate system (GCS). The right side
shows the same antenna tilted by 20° around the x-axis. In order to maintain alignment with the GCS,
the antenna pattern was transformed. The resulting pattern also has a horizontal component. The antenna
response (58) can now be obtained by reading the polarimetric beam pattern at the given angles (θ, φ).

Interpolation of the antenna pattern An antenna pattern (58) is given in spherical coordinates as a
function of the elevation angle θ and the azimuth angle φ. When the orientation of the antenna element
changes, the field pattern has to be read at different angles (Θ, Φ) which include the effect of the orientation
change. Rotations in 3-D are easier in Cartesian coordinates. Therefore, the original angle pair (θ, φ) is
transformed into a vector c that describes the arrival- or departure angles in Cartesian coordinates. The
three vector elements represent the x,y and z-component.

c(θ, φ) =

 cos θ · cosφ
cos θ · sinφ

sin θ

 (62)

vertical pattern

horizontal pattern

Dipole antenna, 0° tilt Dipole antenna, 20° tilt

z

x y

z

x y

z

x y

z

x y

-20 -15 -10 -5 0
Attenuation [dB]

Figure 11: Example patterns for a dipole antenna

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

68

QuaDRiGa v1.2.32-458 3 TECHNICAL DOCUMENTATION

A 3x3 matrix R can now be used to describe the orientation change in 3-D space. The example in Figure 11
was tilted by 20° around the x-axis of the coordinate system. The corresponding matrix is

Rx(20◦) =

 1 0 0
0 cos(20◦) − sin(20◦)
0 sin(20◦) cos(20◦)

 (63)

By multiplying R with (62), the orientation change is included in the vector

c+(θ, φ) = RT · c(θ, φ) (64)

The transformed pattern F̃ is needed in spherical coordinates. Thus, c+ is transformed back to spherical
coordinates. This results in the new angles (Θ,Φ).

Θ(θ, φ) = arcsin
[
c+
z (θ, φ)

]
(65)

Φ(θ, φ) = arctan2

[
c+
y (θ, φ), c+

x (θ, φ)
]

(66)

c+
x , c+

y and c+
z are the x, y and z component of c+, respectively. The coefficients of the rotated pattern are

now obtained by reading the original pattern F at the transformed angles

F̂(θ, φ) =

(
F̂ [θ](θ, φ)

F̂ [φ](θ, φ)

)
=

(
F [θ](Θ,Φ)

F [φ](Θ,Φ)

)
(67)

Since the patterns are usually sampled at a fixed angular grid, interpolation is needed here. As a standard
computationally inexpensive procedure, linear interpolation can be used. Alternatively, more advanced
techniques based on the effective aperture distribution function (EADF) are possible [19].

Polarization rotation The second step takes the polarization into account. Due to the rotation of the
primary antenna, the alignment with the probe changes. The antenna patterns are defined in a polar-
spherical polarization basis. However, the rotation is defined in Cartesian coordinates. Thus, we need to
perform the polarization rotation in a Cartesian basis as well. The transformation from the polar-spherical
polarization basis to the Cartesian polarization basis is given by [20] F̂ [x](θ, φ)

F̂ [y](θ, φ)

F̂ [z](θ, φ)

 =

 sin Θ cos Φ − sin Φ
sin Θ sin Φ cos Φ
− cos Θ 0

︸ ︷︷ ︸

=T(Θ,Φ)

·
(
F [θ](Θ,Φ)

F [φ](Θ,Φ)

)
︸ ︷︷ ︸

=F̂(θ,φ)

(68)

The transformation matrix T(Θ,Φ) is both, orthogonal and normalized to unity. Hence, the inverse transfor-
mation matrix is equal to the matrix transpose. The rotated pattern F̃ is obtained by using the interpolated
pattern F̂ and transforming it to a Cartesian polarization basis. Then, this pattern is rotated using the
rotation matrix R and the resulting pattern is transformed back to the polar-spherical basis.

F̃(θ, φ) = T(θ, φ)T ·R ·T(Θ,Φ)︸ ︷︷ ︸
=M̃

·F̂(θ, φ) (69)

The entire process can be described by a 2x2 polarization rotation matrix M̃. Due to the fact that the
radiated energy in both polarizations remains constant and only the alignment with the probe changes, this
matrix is a rotation matrix having the form

M̃(ϑ) =

(
cosϑ − sinϑ
sinϑ cosϑ

)
, (70)

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

69

QuaDRiGa v1.2.32-458 3 TECHNICAL DOCUMENTATION

where the polarization rotation angle ϑ follows from

cosϑ =

 sin θ cosφ
sin θ sinφ
− cos θ

T

·R ·

 sin Θ cos Φ
sin Θ sin Φ
− cos Θ

 (71)

sinϑ =

 − sinφ
cosφ

0

T

·R ·

 sin Θ cos Φ
sin Θ sin Φ
− cos Θ

 (72)

ϑ = arctan2 [sinϑ, cosϑ] (73)

3.5.3 Constructing the Polarization Transfer Matrix

Polarization of direct (LOS) path In the LOS polarization model, the probe is replaced by the receive
antenna. Both, the transmitter and the receiver can have different orientations, e.g. due to a downtilt at the
BS and a given movement direction at the MT. In addition, a reflection operation is needed to transform
the outgoing polarization direction at the transmitter into an incoming direction at the receiver. Thus,
a combination three linear transformations, two rotations and one reflection, is sufficient to construct the
polarization transfer matrix of the LOS path.

M
[LOS]
r,t,s =

[
M̃
(
ϑ[LOS]
r,s

)]T
·
(

1 0
0 −1

)
· M̃

(
ϑ

[LOS]
t,s

)
=

(
cosϑ

[LOS]
r,s − sinϑ

[LOS]
r,s

− sinϑ
[LOS]
r,s − cosϑ

[LOS]
r,s

)
·

(
cosϑ

[LOS]
t,s − sinϑ

[LOS]
t,s

sinϑ
[LOS]
t,s cosϑ

[LOS]
t,s

)
(74)

Model for the indirect (NLOS) paths For the NLOS components, the transmitted signal undergoes some
diffraction, reflection or scattering before reaching the receiver. Following the common Fresnel formula in
electrodynamics, the polarization direction can be changed at the boundary surface between two dielectric
media. T. Svantesson [21] provided a method for modeling the polarization of a reflected wave where the
polarization coupling is a function of several geometric parameters such as the orientation of the scatterers.
However, these parameters are not generally available in the SCM. In addition to that, only metallic reflec-
tions keep the polarization unchanged. Reflections at dielectric media can cause changes of the polarization
being a function of the complex-valued dielectric constant of the media and of the angle of incidence. Hence,
not only the polarization angle might change, but also the polarization type. In order to address this issue,
studies of the polarizations effects in individual scattering clusters in several outdoor- and indoor scenarios
were done [22–24]. The published results indicate that, in many cases, scattering preserves the polarization
quiet well. However, since only the powers of the elements in the polarization coupling matrix were analyzed,
no conclusions can be drawn on how elliptic the polarization of the scattered wave becomes.

The polarization coupling matrix M for the NLOS components can be described by a combination of linear
transformations. Hence, it is possible to take advantage of the existing findings of the XPR. The NLOS
polarization model consists of three parts: A deterministic part and two stochastic parts.

1. Deterministic part
The deterministic component is the same as for the LOS polarization. However, the wave travel direc-
tion rr,t,s used to calculate the departure and arrival angles for LOS propagation must be replaced by
at,l,m,s, i.e., the vector pointing from the position of the transmitter to the first-bounce scatterer (FBS),
and ar,l,m,s, i.e., the vector pointing from the position of the LBS to the Rx position. Furthermore,
the calculation must be repeated for each sub-path.

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

70

QuaDRiGa v1.2.32-458 3 TECHNICAL DOCUMENTATION

2. (a) Linear polarization with same XPR for V and H-component
Individual values of the XPR for each subpath are drawn from a normal distribution

XPR
[dB]
l,m = N

(
XPRµ,XPR2

σ

)
. (75)

In order to model the polarization change due to scattering, XPRl,m, we can follow the approach from

[25] and calculate an additional NLOS rotation matrix M
[linear]
l,m as

M
[linear]
l,m =

(
mvv mvh

mhv mhh

)
=

(
cos γl,m − sin γl,m
sin γl,m cos γl,m

)
(76)

Following the notations in [26], we get

XPRl,m =
|mvv|2

|mhv|2
=
|mhh|2

|mvh|2
=

(cos γl,m)2

(sin γl,m)2
= (cot γl,m)2 (77)

γl,m = arccot
(√

XPRl,m

)
(78)

2. (b) Linear polarization with different XPR for V and H-component
If the XPR is different for the vertical and horizontal component as suggested by [23, 26], then we get
three parameters:

XPR
[v]
l,m =

|mvv|2

|mhv|2
; XPR

[h]
l,m =

|mhh|2

|mvh|2
; CPRl,m =

|mvv|2

|mhh|2
.

Those are also drawn from a normal distribution as in (75). In order to fulfill all three, we can combine
two rotations, one for the vertical and one for the horizontal component, with a scaling operation. We

convert XPR[v] and XPR[h] to rotation angles γ[v] and γ[h] using (78) and calculate M
[linear]
l,m to

M
[1]
l,m =

 cos γ
[v]
l,m − tan γ

[h]
l,m · cos γ

[v]
l,m ·

1√
CPRl,m

sin γ
[v]
l,m cos γ

[v]
l,m ·

1√
CPRl,m

 (79)

Due to the scaling with 1/
√

CPR, M[1] will scale the power of the path. Hence, a normalization is
needed to counteract this effect:

M
[linear]
l,m =

√
2 ·

M
[1]
l,m∣∣∣∣∣∣M[1]
l,m

∣∣∣∣∣∣
F

(80)

3. Stochastic part for the elliptical component
Elliptic polarization is obtained, when there is a phase difference between the horizontal and the
vertical component. This is included by a scaling matrix

M
[elliptic]
l,m =

(
exp(−jκl,m) 0

0 exp(jκl,m)

)
(81)

The phase shift κ is calculated to

κl,m = X l,m · arccot
(√

XPRl,m

)
, (82)

where X l,m ∼ {−1, 1} is the positive or negative sign.

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

71

QuaDRiGa v1.2.32-458 3 TECHNICAL DOCUMENTATION

The polarization for the NLOS paths is a combination of five linear transformations. First, any change in the
transmitter orientation is included by a rotation matrix M̃ (ϑt,l,m,s). Then, the influence of the scattering
cluster is modeled by a combination of three operations: A scaling operation that introduces a phase shift
between the vertical and horizontal component to obtain an elliptic XPR, a reflection operation, and a
rotation operation to obtain the desired linear XPR. Last, the change in the receiver orientation is included
by a second rotation matrix M̃ (ϑr,l,m,s). The complete polarization transfer matrix notes

M
[NLOS]
r,t,l,m,s =

[
M̃ (ϑr,l,m,s)

]T
·M[linear]

l,m ·
(

1 0
0 −1

)
·M[elliptic]

l,m · M̃ (ϑt,l,m,s) (83)

If the same XPR is used for V and H-component, the equation can be simplified to:

γ+
l,m = ϑr,l,m,s − γl,m (84)

M
[NLOS]
r,t,l,m,s =

(
cos γ+

l,m − sin γ+
l,m

− sin γ+
l,m − cos γ+

l,m

)(
exp(−jκl,m) 0

0 exp(jκl,m)

)(
cosϑt,s − sinϑt,s
sinϑt,s cosϑt,s

)

Obtaining initial XPR values In the model, the simplified option 2. (a) is used to keep the compatibility
with the WINNER parameter tables where the same XPR value is applied to both, the V and H-component.
Statistics for the values for XPRµ and XPRσ are extracted from measurements. When those parameters
are calculated from measured data, they are usually averaged over different propagations paths. Thus, the
XPR value from the parameter tables is a LSPs having a scenario-dependent distribution, i.e., it depends

on the positions of the MT. However, here, we need to draw a values XPR
[dB]
l,m for individual MPCs. If this

is done using (75), then the value for XPRσ obtained from the generated channel coefficients will effectively
become zero due to the averaging over several MPC and snapshots. Therefore, a two-step approach is used

here. First, a value XPR
[LSP]
µ is drawn from the a normal distribution

XPR[LSP]
µ = N

(
XPRµ,XPR2

σ

)
. (85)

This value represents the average XPR over all MPCs at the receiver positions. Then, in a second step,

the XPR for the individual MPCs is drawn using XPR
[LSP]
µ instead of XPRµ. This maintains the original

spread XPRσ in the generated channel coefficients.

XPR
[dB]
l,m = N

(
XPR[LSP]

µ ,XPR2
σ

)
(86)

3.6 Combining Sub-Paths into Paths

Each of the 20 sub-path gets initialized with a random phase ψ0. In addition, a deterministic phase compo-
nent ψr,l,m,s (51) is obtained from the total length of the propagation path. Both components are combined
to

ψ+
r,t,l,m,s = exp

(
−jψ0

l,m − jψr,t,l,m,s
)

(87)

The initial channel coefficients for each sub-path, including the polarization effects, are obtained by (59).
Now, the 20 sub-paths get combined into a single path. However, due to the random initial phases, a
simple sum will result in a random path power since it is unpredictable if the phase components add up
constructively or destructively. This is compensated by normalization where the sum of the complex phases
is calculated separately over all S snapshots of a segment. Then, the combined path weight is calculated as

g
[2]
r,t,l,s =

√
Pl
β
·

20∑
m=1

g
[1]
r,t,l,m,s · ψ

+
r,t,l,m,s, (88)

β =
1

S

S∑
s=1

(
20∑
m=1

ψ+
r,t,l,m,s

)2

, (89)

where P l is the initial path power from Section 3.2.

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

72

QuaDRiGa v1.2.32-458 3 TECHNICAL DOCUMENTATION

3.7 Path Gain, Shadow Fading and K-Factor

Now, we apply the path gain (PG), the shadow fading (SF), and the KF. Hata [27] presented a simple model
for macro-cellular settings where the PG scales with the logarithm of the distance d (in units of meters)
between BS and terminal:

PG[dB] = −A · log10 d[m] −B, (90)

where A and B are scenario-specific coefficients that are typically determined by measurements. The path
gain exponent A often varies between values of 20 and 40, depending on the propagation conditions, the
BS height, and other factors. Combining PG and SF results in the effective path gain PG[eff]. The values
for the SF and the KF are obtained from the LSP map by an interpolation of the surrounding pixels at the
position of the sth snapshot. The KF at the initial position is already included due to the scaling in (21).
Thus, we have to take this into account and scale the power accordingly.

PG[eff]
s =

√
10

0.1
(

PG
[dB]
s +SF

[dB]
s

)
·

√
1 + P1

(
Ks

K0
− 1

)
(91)

gr,t,l,s = PG[eff]
s ·

√

Ks
K0
· g[2]
r,t,l,s for l = 1;

g
[2]
r,t,l,s otherwise.

(92)

In the above equations, Ks and SF
[dB]
s are the interpolated values for the KF and the SF from the map, K0

is the KF at the initial position, PG
[dB]
s is the path gain (without SF) at the MT position (90), and P1 is

the power of the LOS path (21).

3.8 Transitions between Segments

The calculations in Sections 3.2 to 3.7 were done independently for each segment of the MT trajectory. Here,
we combine those segments into a long, time-evolving sequence of channel coefficients. The idea comes from
the WINNER II model [3]. However, it was neither implemented nor tested. Our implementation requires
that parts of the segments are overlapping as depicted in the top of Figure 12.

The lifetime of scattering clusters is confined within the combined length of two adjacent segments. The
power of paths from the old segment is ramped down and the power of new paths is ramped up within
the overlapping region of the two segments. Hence, this process describes the birth and death of scattering
clusters along the trajectory. Outside the overlapping region, all paths of the segment are active. The
overlapping region is further split into sub-intervals to keep the computational overhead low. During each
sub-interval, one old path ramps down and one new path ramps up. The power ramps are modeled by a
squared sine function:

w[sin] = sin2
(π

2
· w[lin]

)
. (93)

Here, w[lin] is the linear ramp ranging from 0 to 1, and w[sin] is the corresponding sine-shaped ramp with a
constant slope at the beginning and the end. This prevents inconsistencies at the edges of the sub-intervals.
If both segments have a different number of paths, the ramp is stretched over the whole overlapping area
for paths without a partner. For the LOS path, which is present in both segments, only power and phase
are adjusted.

Paths need to be carefully matched to minimize the impact of the transition on the instantaneous values of
the LSPs. For example, the DS increases if a path with a small delay ramps down and a similarly strong
path with a large delay ramps up. Hence, the DS can fluctuate randomly within the overlapping region. To
balance this out, paths from both segments are paired in a way that minimize these fluctuations. This is
done by determining the values of the DS before and after the transition. Then, a target DS is calculated
for each sub-interval. For example, if the old segment yields a DS of 200 ns and the new segment has

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

73

QuaDRiGa v1.2.32-458 3 TECHNICAL DOCUMENTATION

merging area
(variable length)seg

ment
 1

segm
ent

 2

overlapping part

initial pos.
segment 1

initial pos.
segment 2

original snapshots
@ constant distance

interpolated snapshot
@ constant samplerate

Transitions between Segments

Postprocessing / Variable Speeds:

Figure 12: Top: Illustration of the overlapping area used for calculating the transitions between segments
(step G), Bottom: Illustration of the interpolation to to obtain variable MT speeds (step H).

400 ns, then the target DS will be 220 ns for the first sub-interval, 240 ns for the second and so on. Then,
a combination of paths is searched that best matches the target DS for each sub-interval.

3.9 Postprocessing / Variable Speeds

In the real world, MTs move at arbitrary speeds, including accelerations and decelerations. Provided that
the sampling theorem is fulfilled, we can interpolate the channel coefficients to include such effects. This is
illustrated in the bottom part of Figure 12. The white dots represent the snapshots at a constant distance.
However, the sample points (gray stars) can have unequal spacing, e.g., for an accelerated movement.
Each sample point in the time domain (given in units of seconds) has a corresponding position on the
MT trajectory (in units of meters). The amplitudes and phases of the channel coefficients are interpolated
separately using cubic spline interpolation. The path delays are interpolated with a piecewise cubic hermite
interpolating polynomial.

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

74

QuaDRiGa v1.2.32-458 A TUTORIALS

A Tutorials

In the following, we provide a variety of tutorials that can get you started with QuaDRiGa. You can also
use the MATLAB Help to access these files.

A.1 Network Setup and Parameter Generation

The channel model class ’parameter set’ generates correlated values for the LSPs. The channel builder then
uses those values to create coefficients that have the specific properties defined in ’parameter set’. One
important question is therefore: Can the same properties which are defined in ’parameter set’ also be found
in the generated coefficients? This is an important test to verify, if all components of the channel builder
work correctly.

Channel model setup and coefficient generation We first set up the basic parameters. We do not need
drifting here, since no time varying channels are generated.

1 close all

2 clear all

3

4 set(0,’defaultTextFontSize ’, 14)

5 set(0,’defaultAxesFontSize ’, 14)

6

7 s = simulation_parameters;

8 s.center_frequency = 2.53e9;

9 s.sample_density = 2;

10 s.use_absolute_delays = 1;

11 s.drifting_precision = 0;

We have one transmitter and 250 receiver positions. Each receiver gets a specific channel. However, the
receivers LSPs will be correlated. We use omni directional antennas at all terminals.

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

75

QuaDRiGa v1.2.32-458 A TUTORIALS

1 l = layout(s);

2 l.no_rx = 250;

3 l.randomize_rx_positions(200 , 1.5 , 1.5 , 1); % 200 m radius , 1.5 m Rx height

4 l.track.set_scenario(’BERLIN_UMa_NLOS ’);

5

6 l.tx_position (3) = 25; % 25 m tx height

7 l.tx_array.generate(’omni’);

8 l.rx_array = l.tx_array;

9

10 l.visualize ([] ,[],0);

11 view(-33, 60);

−200

−100

0

100

200

−200

−100

0

100

200

0

5

10

15

20

25

X−Position

Tx1

Y−Position

H
ei

g
h
t

Tx−Position

Tx−Antenna

Rx−Position

Rx−Antenna

Rx−Track

Figure 13: Distribution of the users in the scenario.

We set up the scenario such that there is no XPR. I.e. all vertical polarized paths will remain vertical
after a reflection. The same result would be achieved with a perfectly X-polarized array at the receiver and
summing up the power over all elements. We further increase the KF to have a wider spread. This allows
us to study the parameters at a wider range when evaluating the results.

1 p = l.create_parameter_sets (0);

2 p.plpar = [];

3 p.scenpar.xpr_mu = 100; % Disable XPR

4 p.scenpar.xpr_sigma = 0;

5 p.scenpar.KF_mu = 5; % Increase KF -Range

6 p.scenpar.KF_sigma = 15;

7 p.scenpar.DS_mu = log10 (0.6e-6); % Median DS = 600 ns

8 p.scenpar.DS_sigma = 0.3; % 300 -1200 ns range

9 p.update_parameters;

10

11 c = p.get_channels;

12

13 coeff = squeeze(cat(1, c.coeff));

14 delay = permute(cat(3,c.delay) , [3,1,2]);

1 Parameters [oo] 5 seconds

2 Channels [oo] 8 seconds

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

76

QuaDRiGa v1.2.32-458 A TUTORIALS

Results and discussion In the following four plots, we extract parameters from the generated coefficients
and compare them with the initial ones which were generated by the ’parameter set’ object (P). The values
in (P) can be seen as a request to the channel builder and the values in the generated coefficients (C) as a
delivery.

We first calculate the SF from the channel data by summing up the power over all 20 taps. We see, that
the values are almost identical.

1 sf = sum(mean(abs(coeff).^2 ,3) ,2);

2

3 figure

4 plot (-35:35, -35:35,’k’)

5 hold on

6 plot ([-35:35]+3 , -35:35 ,’--k’)

7 plot ([-35:35] -3 , -35:35 ,’--k’)

8 plot(10* log10(p.sf ’) , 10* log10(sf) , ’.’)

9 hold off

10 axis([-25 , 25 , -25, 25])

11

12 legend(’Equal ’,’+/- 3dB’ ,4)

13 xlabel(’SF_P [dB]’);

14 ylabel(’SF_C [dB]’);

15 title(’Shadow Fading - Requested vs. generated value’);

−20 −10 0 10 20
−25

−20

−15

−10

−5

0

5

10

15

20

25

SF
P
 [dB]

S
F

C
 [

d
B

]

Shadow Fading − Requested vs. generated value

Equal

+/− 3dB

−30 −20 −10 0 10 20 30
−30

−20

−10

0

10

20

30

KF
P
 [dB]

K
F

C
 [

d
B

]

K−Factor − Requested vs. generated value

Equal

+/− 3dB

0 0.5 1 1.5
0

0.5

1

1.5

DS
P
 [µs]

D
S

C
 [

µ
s]

Delay Spread − Requested vs. generated value

Equal

+/− 10% Error

−30 −20 −10 0 10 20 30
−6

−4

−2

0

2

4

6

KF
P
 [dB]

D
S

P
 −

 D
S

C
 [

d
B

]

Delay Spread difference vs. K−factor

Equal

+/− 3dB

Figure 14: Comparison of input values and simulation results

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

77

QuaDRiGa v1.2.32-458 A TUTORIALS

Next, we repeat the same calculation for the K-Factor. Again, we see that the values are almost identical.

1 p_nlos = sum(mean(abs(coeff (:,2:end ,:)).^2 ,3) ,2);

2 p_los = mean(abs(coeff (:,1,:)).^2 ,3);

3 kf = p_los ./ p_nlos;

4

5 figure

6 plot (-35:35, -35:35,’k’)

7 hold on

8 plot ([-35:35]+3 , -35:35 ,’--k’)

9 plot ([-35:35] -3 , -35:35 ,’--k’)

10 plot(10* log10(p.kf ’) , 10* log10(kf) , ’.’)

11 hold off

12 axis([-30 , 30 , -30, 30])

13

14 legend(’Equal ’,’+/- 3dB’ ,4)

15 xlabel(’KF_P [dB]’);

16 ylabel(’KF_C [dB]’);

17 title(’K-Factor - Requested vs. generated value’);

Now we repeat the calculation for the RMS delays spread.

1 pow_tap = abs(coeff).^2;

2 pow_sum = sum(pow_tap ,2);

3 mean_delay = sum(pow_tap .*delay ,2) ./ pow_sum;

4 ds = sqrt(sum(pow_tap .*delay .^2 ,2)./ pow_sum - mean_delay .^2);

5 ds = mean(ds ,3);

6

7 figure

8 plot ([0:0.1:2] ,[0:0.1:2] , ’k’)

9 hold on

10 plot ([0:0.1:2]*1.1 ,[0:0.1:2] , ’--k’)

11 plot ([0:0.1:2] ,[0:0.1:2]*1.1 , ’--k’)

12 plot(p.ds ’*1e6 , (ds ’)*1e6 , ’.’)

13 hold off

14 axis([0,1.5,0,1.5])

15

16 legend(’Equal ’,’+/- 10% Error ’ ,4)

17 xlabel(’DS_P [\mus]’);

18 ylabel(’DS_C [\mus]’);

19 title(’Delay Spread - Requested vs. generated value’);

The following plot shows the RMSDS of the requested and generated values (in dB) vs. the K-factor. A
value of +3 means, that the RMSDS of the generated coefficients is twice a high as in the parameter set
(P). We see, that for a K-Factor of up to 30 dB, the DS difference is small (less than 3 dB).

1 figure

2 plot ([-35,35],[0,0],’k’)

3 hold on

4 plot([-35,35],[-3,-3],’--k’)

5 plot ([-35,35],[3,3],’--k’)

6 plot(10* log10(p.kf ’), 10* log10(ds./p.ds ’) , ’.’)

7 hold off

8 axis([-30 , 30 , -6 6])

9

10 legend(’Equal ’,’+/- 3dB’ ,3)

11 xlabel(’KF_P [dB]’);

12 ylabel(’DS_P - DS_C [dB]’);

13 title(’Delay Spread difference vs. K-factor ’);

1 close all

2 disp([’QuaDRiGa Version: ’,simulation_parameters.version])

1 QuaDRiGa Version: 1.0.1 -145

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

78

QuaDRiGa v1.2.32-458 A TUTORIALS

A.2 Simulating a Measured Scenario

This script recreates a measured drive test from the Park Inn Hotel at Berlin Alexanderplatz. The transmit-
ter was at the rooftop of the hotel while the mobile receiver was moving south on Grunerstraße. A simplified
version of the scenario is recreated in the simulation where the scenarios along the track were classified by
hand.

Channel model setup and coefficient generation First, we set up the channel model.

1 set(0,’defaultTextFontSize ’, 14)

2 set(0,’defaultAxesFontSize ’, 14)

3 RandStream.setGlobalStream(RandStream(’mt19937ar ’,’seed’ ,1));

4

5 close all

6 clear all

7

8 s = simulation_parameters; % Basic simulation parameters

9 s.center_frequency = 2.185e9;

10 s.sample_density = 2;

11 s.use_absolute_delays = 1;

12

13 t = track(’linear ’ ,500,-135*pi/180); % Track with 500m length , direction SE

14 t.initial_position = [120; -120;0]; % Start position

15 t.interpolate_positions(1); % Interpolate to 1 sample per meter

16

17 t.segment_index = [1 45 97 108 110 160 190 215 235 245 ...

18 280 295 304 330 400 430]; % Set segments (states)

19

20 Sl = ’MIMOSA_10 -45 _LOS’;

21 Sn = ’MIMOSA_10 -45 _NLOS ’;

22 t.scenario = {Sn ,Sl,Sn,Sl ,Sn,Sn ,Sn,Sl,Sn ,Sl,Sn,Sl ,Sn,Sn,Sn ,Sn};

23 t.interpolate_positions(3);

24

25 l = layout(s);

26 l.tx_position = [0;0;125]; % Set the position of the Tx

27 l.track = t; % Set the rx -track

28

29 l.tx_array = array(’rhcp -lhcp -dipole ’); % Generate Tx antenna

30 l.tx_array.rotate_pattern (30,’y’); % 30 deg Tilt

31 l.tx_array.rotate_pattern (-90,’z’); % point southwards

32

33 l.rx_array = array(’rhcp -lhcp -dipole ’); % Rx -Antenna

34 l.rx_array.rotate_pattern (-90,’y’); % point skywards

35

36 l.visualize;

37 view(-33, 45);

38

39 lnk = [l.tx_position , ...

40 l.track.positions(:,l.track.segment_index (2))+l.track.initial_position];

41

42 hold on

43 plot3(lnk(1,:),lnk(2,:),lnk(3,:) , ’--’)

44 hold off

Generate channel coefficients Next, we calculate the channel coefficients.

1 [p,cb] = l.create_parameter_sets (0);

2 p(2).scenpar.NumClusters = 14;

3 p.update_parameters;

4

5 c = cb.get_channels;

6 cn = c.merge (0.2);

1 Parameters [oo] 31 seconds

2 Channels [oo] 15 seconds

3 Merging [oo] 2 seconds

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

79

QuaDRiGa v1.2.32-458 A TUTORIALS

−300

−200

−100

0

100

200

−500

−400

−300

−200

−100

0

0

20

40

60

80

100

120

140

X−Position

MIMOSA_10−45_NLOS

MIMOSA_10−45_LOS
MIMOSA_10−45_NLOSMIMOSA_10−45_LOSMIMOSA_10−45_NLOS

MIMOSA_10−45_NLOS
MIMOSA_10−45_NLOS
MIMOSA_10−45_LOSMIMOSA_10−45_NLOSMIMOSA_10−45_LOS

MIMOSA_10−45_NLOSMIMOSA_10−45_LOSMIMOSA_10−45_NLOS
MIMOSA_10−45_NLOS

MIMOSA_10−45_NLOS
MIMOSA_10−45_NLOS

Tx1

Y−Position

H
ei

g
h

t

Tx−Position

Tx−Antenna

Rx−Position

Rx−Antenna

Rx−Track

Figure 15: Scenario setup for the comparison of simulated and measured data

Results First, we plot the PDP vs distance from the start point (see Fig. 16).

1 h = cn(1).fr(20e6 ,256);

2 pdp = squeeze(sum(sum(abs(ifft(h,[] ,3)).^2 , 1) ,2));

3 pdp = 10* log10(pdp.’);

4

5 figure

6 imagesc(pdp(end : -1:1 ,1:192));

7

8 cm = colormap(’hot’);

9 colormap(cm(end:-1:1,:));

10

11 caxis([max(max(pdp)) -60 max(max(pdp))-5]);

12 colorbar

13

14 title(’Time variant power delay profile ’);

15

16 set(gca ,’XTick’ ,1:32:192);

17 set(gca ,’XTickLabel ’ ,(0:32:192) /20e6*1e6);

18 xlabel(’Delay [\mus]’);

19

20 ind = sort(cn.no_snap : -cn(1).no_snap /10 : 1);

21 set(gca ,’YTick’, ind);

22 set(gca ,’YTickLabel ’, round(sort (500-ind / 3,’descend ’)));

23 ylabel(’Distance [m]’);

Delay [µs]

D
is

ta
n
ce

 [
m

]

Time variant power delay profile

0 1.6 3.2 4.8 6.4 8

450

400

350

300

250

200

150

100

50

0
−140

−135

−130

−125

−120

−115

−110

−105

−100

−95

−90

Figure 16: 2D PDP of the simulated track

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

80

QuaDRiGa v1.2.32-458 A TUTORIALS

The next plot shows the total received power along the path (Fig. 17, top left). Green shaded ares are LOS.
The rest is NLOS.

1 dist = (1:cn.no_snap)*l.track.get_length/cn.no_snap;

2 ind = find(strcmp(l.track.scenario ,Sl));

3 los = [];

4 for n = 1:numel(ind)

5 los = [los l.track.segment_index(ind(n)) : l.track.segment_index(ind(n)+1)];

6 end

7

8 power = 10* log10(sum(reshape(abs(cn.coeff).^2 , [] , cn.no_snap) ,1)/4);

9 ar = zeros(1,cn.no_snap);

10 ar(los) = -200;

11

12 figure

13 a = area(dist ,ar);

14 set(a(1),’FaceColor ’ ,[0.7 0.9 0.7]);

15 set(a,’LineStyle ’,’none’)

16

17 hold on

18 plot(dist ,power)

19 hold off

20

21 title(’Position dependent power ’)

22 xlabel(’Track [m]’);

23 ylabel(’Power [dB]’);

24 axis ([0 500 min(power) -5 max(power)+5])

25 legend(’LOS’,’P_{total}’ ,4)

26 grid on

The following plot (Fig. 17, top right) shows the distribution (PDF) of the received power for both, the LOS
and NLOS segments.

1 bins = -150:2: -80;

2 p_los = hist(power(los),bins)/cn.no_snap *100;

3 p_nlos = hist(power(setdiff (1:cn.no_snap ,los)),bins)/cn.no_snap *100;

4

5 figure

6 bar(bins ,[p_los;p_nlos]’)

7 axis ([-124.5,-83,0, ceil(max([p_los ,p_nlos]))])

8 grid on

9 colormap(’Cool’)

10

11 title(’Empirical PDF of the \ac{LOS} and NLOS power’)

12 xlabel(’P_{total} [dB]’);

13 ylabel(’Probability [%]’);

14 legend(’LOS’,’NLOS’ ,1)

The next plot shows the RMS delay spread along the path. Again, shaded ares are for the LOS segments.

1 pow_tap = squeeze(sum(sum(abs(cn.coeff).^2,1) ,2));

2 pow_sum = sum(pow_tap ,1);

3 mean_delay = sum(pow_tap .*cn.delay ,1) ./ pow_sum;

4 ds = sqrt(sum(pow_tap .*cn.delay .^2 ,1)./ pow_sum - mean_delay .^2);

5 ar = zeros(1,cn.no_snap);

6 ar(los) = 10;

7

8 figure

9 a = area(dist ,ar);

10 set(a(1),’FaceColor ’ ,[0.7 0.9 0.7]);

11 set(a,’LineStyle ’,’none’)

12

13 hold on

14 plot(dist , ds*1e6)

15 hold off

16

17 ma = 1e6*(max(ds)+0.1* max(ds));

18 axis ([0 500 0 ma])

19 title(’Position dependant delay spread ’);

20 xlabel(’Track [m]’);

21 ylabel(’Delay Spread [dB]’);

22 legend(’LOS’,’\sigma_\tau’ ,1)

23 grid on

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

81

QuaDRiGa v1.2.32-458 A TUTORIALS

The final plot (Fig. 17, bottom right) shows the distribution (PDF) of the RMS delay spread for both, the
LOS and NLOS segments.

1 bins = 0:0.03:3;

2 ds_los = hist(ds(los)*1e6 ,bins)/cn.no_snap *100;

3 ds_nlos = hist(ds(setdiff (1:cn.no_snap ,los))*1e6,bins)/cn.no_snap *100;

4

5 figure

6 bar(bins ,[ds_los;ds_nlos]’)

7 axis ([0,1.5,0, ceil(max([ds_los ,ds_nlos]))])

8 grid on

9 colormap(’Cool’)

10

11 title(’Empirical PDF of the LOS and NLOS RMSDS’)

12 xlabel(’\sigma_\tau [\mus]’);

13 ylabel(’Probability [%]’);

14 legend(’LOS’,’NLOS’ ,1)

1 close all

2 disp([’QuaDRiGa Version: ’,simulation_parameters.version])

1 QuaDRiGa Version: 1.0.1 -145

0 100 200 300 400 500

−125

−120

−115

−110

−105

−100

−95

−90

−85

Position dependent power

Track [m]

P
o

w
er

 [
d

B
]

LOS
P

total

−120 −115 −110 −105 −100 −95 −90 −85
0

1

2

3

4

5

6

7

8

9

10
Empirical PDF of the LOS and NLOS power

P
total

 [dB]

P
ro

b
ab

il
it

y
 [

%
]

LOS

NLOS

0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

Position dependant delay spread

Track [m]

D
el

ay
 S

p
re

ad
 [

d
B

]

LOS
σ

τ

0 0.5 1 1.5
0

2

4

6

8

10

12

Empirical PDF of the LOS and NLOS RMSDS

σ
τ
 [µs]

P
ro

b
ab

il
it

y
 [

%
]

LOS

NLOS

Figure 17: Results for the measurement based simulation tutorial

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

82

QuaDRiGa v1.2.32-458 A TUTORIALS

A.3 Generation of Satellite Channels

This script demonstrates the parametrization of the channel model to generate time-continuous sequences
for a satellite scenario.

Setting up the Simulation Parameters First, we set up the general simulation parameters. We choose
a center frequency of 2.1 GHz. We also want to use drifting in order to get the correct delays and angles
for the time-continuous simulation. A sample density of 2.5 ensures that the channel coefficients can be
interpolated to different playback speeds later on.

1 close all

2 clear all

3

4 s = simulation_parameters; % Basic simulation parameters

5 s.center_frequency = 2.185e9;

6 s.sample_density = 0.25;

7

8 RandStream.setGlobalStream(RandStream(’mt19937ar ’,’seed’ ,1));

Creating a random Track and defining states along the track Next, we generate a simulation track. A
track describes the movement of a mobile terminal. It is composed of an ordered list of positions. During the
simulation, one snapshot is generated for each position on the track. Later on, the generation of the track
is done by the state sequence generator. Here, we implement a simple version of the sequence generator
to generate a random track. We first create a set of streets with different length. We assume a normal
distribution of the street length where the parameters mu and sigma were fitted from random distances
between two crossings in central Berlin (measured with Google earth).

1 street_length_mu = 187; % Average street length in m

2 street_length_sigma = 83;

3 min_street_length = 50;

4

5 turn_probability = 0.4; % The prob. that the car turns at a crossing

6 curve_radius = 10; % The curve radius in m

7 diro = rand * 2*pi; % Random start direction

For the given parameters, we calculate a list of points along the track that resemble the street grid and the
turns at crossings.

1 point = 0; % The start point (always at [0 ,0])

2 m = 1; % A counter for the points

3 for n = 1:3 % We simulate 3 street segments

4

5 % Get a random street length drawn from the distribution defined above

6 street_length = randn*street_length_sigma + street_length_mu;

7 while street_length < min_street_length

8 street_length = randn*street_length_sigma + street_length_mu;

9 end

10

11 % Get 3 points along the street

12 point(m+1) = point(m) + exp(1j*diro) * street_length *0.1;

13 point(m+2) = point(m) + exp(1j*diro) * street_length *0.9;

14 point(m+3) = point(m) + exp(1j*diro) * street_length;

15 m=m+3;

16

17 % At a crossing , the car could change its direction. This is

18 % modeled here

19 if rand < turn_probability

20 dirn = diro + sign(rand -0.5) * pi/2 + randn*pi/12;

21 point(m+1) = point(m) + curve_radius *(exp(1j*diro) + exp(1j*dirn));

22 diro = dirn;

23 m=m+1;

24 end

25 end

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

83

QuaDRiGa v1.2.32-458 A TUTORIALS

Next, we create a track object and pass the points along the track. We then use the internal interpolation
functions to interpolate the track to 1 point per meter.

1 t = track; % Create a track object

2 t.positions = [real(point) ; imag(point) ; zeros(1,numel(point))];

3 t.interpolate_positions(1); % Interpolate to 1 point per meter

We now assemble a rudimentary state sequence generator that generates different states along the track. We
first define the distribution parameters of the segment length and then calculate the segments themselves.
The two possible states are ”MIMOSA 10-45 LOS” which stands for LOS or good state and ”MIMOSA 10-
45 NLOS” for NLOS or bad state.

1 segment_length_mu = 30; % Average segment length in m

2 segment_length_sigma = 12; % Standard deviation in m

3 min_segment_length = 10; % Minimum segment length in m

4

5 % Now we define the segments (the states) along the track

6 ind = 1;

7 while ind < t.no_snapshots

8

9 % Each scenario has a 50% probability

10 if rand < 0.5

11 t.scenario{ t.no_segments } = ’MIMOSA_10 -45 _LOS’ ;

12 else

13 t.scenario{ t.no_segments } = ’MIMOSA_10 -45 _NLOS’ ;

14 end

15

16 % Get the length of the current segment

17 segment_length = randn*segment_length_sigma + segment_length_mu;

18 while segment_length <min_segment_length

19 segment_length = randn*segment_length_sigma + segment_length_mu;

20 end

21 segment_length = round(segment_length); % Segment length

22 ind = ind + segment_length; % Start of next segment

23

24 if ind < t.no_snapshots % Exception for the last segment

25 t.no_segments = t.no_segments + 1;

26 t.segment_index(t.no_segments) = ind;

27 end

28 end

−250 −200 −150 −100 −50 0
0

50

100

150

200

250

MIMOSA_10−45_LOS

MIMOSA_10−45_LOS

MIMOSA_10−45_LOS

MIMOSA_10−45_LOS

MIMOSA_10−45_NLOS

MIMOSA_10−45_LOS

MIMOSA_10−45_NLOS

MIMOSA_10−45_LOS

MIMOSA_10−45_LOS

MIMOSA_10−45_LOS

MIMOSA_10−45_NLOS

MIMOSA_10−45_NLOS

MIMOSA_10−45_NLOS

MIMOSA_10−45_LOS

MIMOSA_10−45_NLOS

MIMOSA_10−45_LOS

MIMOSA_10−45_LOS

MIMOSA_10−45_NLOS

Track layout

X−direction [m]

Y
−

d
ir

ec
ti

o
n
 [

m
]

Track

Segment start

Figure 18: Receiver track for the satellite channel tutorial

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

84

QuaDRiGa v1.2.32-458 A TUTORIALS

Finally, we interpolate the track to the given sample density (2 samples per half-wave-length) and plot the
track (see Fig. 18).

1 t.interpolate_positions(s.samples_per_meter);

2 t.visualize;

Defining Antenna Arrays In the third step, we set up our antenna arrays for the transmitter at the satellite
and the receiver. We use synthetic dipole antennas for this case. Two dipoles are crossed by an angle of 90
degree. The signal is then split and fed with a 90 degree phase shift to both elements generating RHCP and
LHCP signals.

1 % Create a patch antenna with 120 degree opening

2 a = array(’custom ’ ,120,120,0);

3

4 % Copy element 1 to element 2 - the resulting antenna array has two

5 % elements , both dipoles.

6 a.copy_element (1,2);

7

8 % Rotate the second pattern by 90 degree around the x-axis.

9 a.rotate_pattern (90,’x’ ,2);

10

11 % Set the coupling between the elements. The Tx -signal for the first

12 % element is shifted by +90 degree out of phase and put on the second element.

13 % The signal for the second element is shifted by -90 degree and copied to the

14 % first element. Both antennas thus radiate a RHCP and a LHCP wave.

15 a.coupling = 1/sqrt (2) * [1 1;1j -1j];

16

17 % Create a copy of the array for the receiver.

18 b = a.copy_objects;

19 b.coupling = 1/sqrt (2) * [1 1;1j -1j];

20

21 % Rotate the receive antenna array to face sky -wards.

22 b.rotate_pattern (-90,’y’);

23

24 b.visualize; % Plot the pattern of the Rx -Antenna

Element 1

−10
0

10 −10
0

10

−10

0

10

y

Vertical

x

−10
0

10 −10
0

10

−10

0

10

y

Horizontal

x

Attenuation (dB)
−12 −9 −6 −3 0 3 6

Element 2

−10
0

10 −10
0

10

−10

0

10

y

Vertical

x

−10
0

10 −10
0

10

−10

0

10

y

Horizontal

x

Attenuation (dB)
−12 −9 −6 −3 0 3 6

Figure 19: Antenna patterns for the satellite channel tutorial

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

85

QuaDRiGa v1.2.32-458 A TUTORIALS

Setting up the Layout In this step, we combine the track, the antennas and the position of the satellite
into a simulation layout. A layout object contains all the geometric information that are necessary to run
the simulation. First, we define the position of the satellite. Since the model uses Cartesian coordinates, we
have to transform the position of the satellite first.

1 l = layout(s); % Create a new layout

2

3 % Choose a random satellite position (Astra 2, seen from Berlin).

4 % The distance only needs to be big enough to ensure insignificant changes

5 % in the reception angle on the ground.

6

7 sat_el = 28.4; % Elevation angle

8 sat_az = 161.6; % Azimuth angle (South = 180 degree)

9 rx_latitude = 51; % Latitude of the Rx

10

11 % Approximate the satelite distance for GEO orbit

12 dist_x = 35786 + rx_latitude /90 * 6384; % [km]

13 dist_y = (1- rx_latitude /90) * 6384; % [km]

14 sat_dist = sqrt(dist_x ^2 + dist_y ^2); % [km]

15 sat_dist = sat_dist *1e3; % [m]

16

17 % Transform angles to Cartesian coordinates

18 sat_x = sat_dist * cosd(sat_el) * cosd(-sat_az +90);

19 sat_y = sat_dist * cosd(sat_el) * sind(-sat_az +90);

20 sat_z = sat_dist * sind(sat_el);

21

22 % We also turn the antenna of the satellite so it points to the receiver.

23 a.rotate_pattern(sat_el , ’y’);

24 a.rotate_pattern(270- sat_az , ’z’);

25

26 % Set the satellite position in the layout

27 l.tx_position = [sat_x ; sat_y ; sat_z];

28

29 l.track = t; % Set the track for the receiver

30 l.tx_array = a; % Set the tx_array

31 l.rx_array = b; % Set the rx_array

Setting up scenario parameters Next, the large scale parameters are set. The first line calls
”l.create parameter sets”, a built-in function that processes the data in the layout and returns a new ”pa-
rameter set” object ”p”. ”p” is an array with two elements. One of them contains all the parameters for
the good state (LOS) and one for the bad state (NLOS).

1 p = l.create_parameter_sets (0);

Each parameter set has two different kinds of parameters. One for the scenario and one for the current state.
For example, a scenario might have an average RMS Delay spread of 158 ns plus a certain variance which
defines a range for the RMSDS. In addition to that, there are cross-correlations with other parameters such
as the angular spread at the transmitter. All those parameters are stored in the ”scenpar” property. For
the good state, that parameters are:

1 Sl = strcmp({ p(1).name , p(2).name } ,’MIMOSA -10-45- LOS_Tx1 ’); % Select good state

2 p(Sl).scenpar % Show parameter list

1

2 ans =

3

4 NumClusters: 8

5 r_DS: 2.5000

6 PerClusterAS_D: 6.2000e-07

7 PerClusterAS_A: 12

8 PerClusterES_D: 1.9000e-07

9 PerClusterES_A: 7

10 LOS_scatter_radius: 0.1000

11 LNS_ksi: 3

12 xpr_mu: 11.9000

13 xpr_sigma: 5.5000

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

86

QuaDRiGa v1.2.32-458 A TUTORIALS

14 DS_mu: -7.5000

15 DS_sigma: 0.3000

16 AS_D_mu: -4.6000

17 AS_D_sigma: 0.1000

18 AS_A_mu: 1.5000

19 AS_A_sigma: 0.2000

20 ES_D_mu: -5.1200

21 ES_D_sigma: 0.1000

22 ES_A_mu: 1.4000

23 ES_A_sigma: 0.1000

24 SF_sigma: 3.6000

25 KF_mu: 15.5000

26 KF_sigma: 5.9000

27 DS_lambda: 30.5000

28 AS_D_lambda: 1000

29 AS_A_lambda: 31.5000

30 ES_D_lambda: 1000

31 ES_A_lambda: 6

32 SF_lambda: 35

33 KF_lambda: 4.5000

34 asD_ds: 0

35 asA_ds: 0.6100

36 asA_sf: 0.5600

37 asD_sf: 0

38 ds_sf: 0.4300

39 asD_asA: 0

40 asD_kf: 0

41 asA_kf: -0.4400

42 ds_kf: -0.4600

43 sf_kf: -0.3000

44 esD_ds: 0

45 esA_ds: -0.0500

46 esA_sf: 0.1800

47 esD_sf: 0

48 esD_esA: 0

49 esD_asD: 0

50 esD_asA: 0

51 esA_asD: 0

52 esA_asA: 0.1500

53 esD_kf: 0

54 esA_kf: -0.0300

Note that the values are given for a log-normal distribution. Thus, the RMSDS in nanoseconds follows from

1 10^(p(Sl).scenpar.DS_mu) * 1e9

1

2 ans =

3

4 31.6228

Each parameter on that list can be changed by just assigning it a new value. Here, we set the number
of clusters for the LOS scenario to 7. Note that the default settings are stored in files in the sub-folder
”config” of the channel model folder. Here, the default settings can be permanently set. After a change, the
parameters of the segments need to be updated. This is done by calling the ”update parameters” method.

1 p(Sl).scenpar.NumClusters = 7;

2 p.update_parameters;

1 Parameters [oo] 24 seconds

When ”update parameter” is called, the specific parameters for each segment are generated. E.g. each
segment gets assigned a RMS Delay Spread and other values which are drawn from the statistics defined in
scenpar. For the LOS segments, the individual RMSDS values for each segment are:

1 rmsds = p(Sl).ds*1e9

2 average = mean(p(Sl).ds*1e9)

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

87

QuaDRiGa v1.2.32-458 A TUTORIALS

1

2 rmsds =

3

4 Columns 1 through 7

5

6 48.8391 6.8370 55.2154 48.7273 25.9658 29.7929 22.2436

7

8 Columns 8 through 11

9

10 68.7237 13.3159 85.5425 121.5296

11

12

13 average =

14

15 47.8848

Generate channel coefficients Next, we generate the channel coefficients. This is a lengthy task. The
next line then combines the channels of the individual segments into a time-continuous channel. Here, the
parameter (0.2) sets the length of the overlap region between two segments. In this case, it is 20%.

1 c = p.get_channels; % Generate coefficients

2 cn = c.merge (0.2); % Combine segments

1 Channels [oo] 21 seconds

2 Merging [oo] 1 seconds

Evaluation of the data The next two plots show some basic evaluations of the generated coefficients. The
first plot shows the received power for the 4 MIMO links along the track. The plot shows the differences
between the LOS and NLOS segments and the cross-pol discrimination between the MIMO links. The
average path loss for LOS was set to -95 dB and for NLOS -113 dB.

1 dist = (1:cn.no_snap)*t.get_length/cn.no_snap;

2 ind = find(strcmp(t.scenario ,’MIMOSA_10 -45 _LOS’));

3 los = [];

4 for n = 1:numel(ind)

5 start = t.segment_index(ind(n));

6 if n==numel(ind)

7 try

8 stop = t.segment_index(ind(n)+1);

9 catch

10 stop = t.no_snapshots;

11 end

12 else

13 stop = t.segment_index(ind(n)+1);

14 end

15 los = [los start:stop];

16 end

17

18 power = reshape(10* log10(squeeze(sum(abs(cn.coeff).^2 , 3))) , 4,[]);

19

20 mi = min(reshape(power ,[] ,1)) - 5;

21 ma = max(reshape(power ,[] ,1)) + 5;

22

23 ar = ones(1,cn.no_snap) * ma;

24 ar(los) = mi;

25

26 figure(’Position ’,[100 , 100 , 1000 , 700]);

27 a = area(dist ,ar);

28 set(a(1),’FaceColor ’ ,[0.7 0.9 0.7]);

29 set(a,’LineStyle ’,’none’)

30

31 hold on

32 plot(dist ,power ’)

33 hold off

34

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

88

QuaDRiGa v1.2.32-458 A TUTORIALS

35 xlabel(’Track [m]’);

36 ylabel(’Received Power per MIMO LINK [dB]’);

37 axis ([0 t.get_length mi ma])

38 legend(’LOS’,’P_{11}’,’P_{12}’,’P_{21}’,’P_{22}’ ,4)

39 box on

40

41 title(’Received power along the track’)

The next plot shows the RMS delay spread along the path for the first MIMO element. Again, shaded ares
are for the LOS segments.

1 pow_tap = abs(squeeze(cn.coeff (1,1,:,:))).^2;

2 pow_sum = sum(pow_tap ,1);

3 mean_delay = sum(pow_tap .*cn.delay ,1) ./ pow_sum;

4 ds = sqrt(sum(pow_tap .*cn.delay .^2 ,1)./ pow_sum - mean_delay .^2);

5 ar = zeros(1,cn.no_snap);

6 ar(los) = 10000;

7

8 figure(’Position ’,[100 , 100 , 1000 , 700]);

9 a = area(dist ,ar);

10 set(a(1),’FaceColor ’ ,[0.7 0.9 0.7]);

11 set(a,’LineStyle ’,’none’)

12

13 hold on

14 plot(dist , ds*1e9)

15 hold off

16

17 ma = 1e9*(max(ds)+0.1* max(ds));

18

19 axis ([0 t.get_length 0 ma])

20 xlabel(’Track [m]’);

21 ylabel(’Delay Spread [ns]’);

22 legend(’LOS’,’\sigma_\tau’ ,1)

23 title(’Position dependant delay spread ’);

1 close all

2 disp([’QuaDRiGa Version: ’,simulation_parameters.version])

1 QuaDRiGa Version: 1.0.1 -145

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

89

QuaDRiGa v1.2.32-458 A TUTORIALS

0 100 200 300 400 500 600

−130

−120

−110

−100

−90

−80

Track [m]

R
ec

ei
v
ed

 P
o
w

er
 p

er
 M

IM
O

 L
IN

K
 [

d
B

]
Received power along the track

LOS
P

11

P
12

P
21

P
22

0 100 200 300 400 500 600
0

1000

2000

3000

4000

5000

6000

Track [m]

D
el

ay
 S

p
re

ad
 [

n
s]

Position dependant delay spread

LOS
σ

τ

Figure 20: Results for the satellite channel tutorial

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

90

QuaDRiGa v1.2.32-458 A TUTORIALS

A.4 Drifting Phases and Delays

Drifting is an essential feature of the channel model. Drifting enables a continuous time evolution of the
path delays, the path phases, the departure- and arrival angles and the LSPs. It is thus the enabling feature
for time continuous channel simulations. Although drifting was already available in the SCME branch of
the WINNER channel model, it did not make it into the main branch. Thus, drifting is not available in the
WIM1, WIM2 or WIM+ model. Here the functionality is implemented again. This script focuses on the
delay and the phase component of the drifting functionality.

Channel model setup and coefficient generation First, we parameterize the channel model. We start
with the basic simulation parameters. For the desired output, we need two additional options: we want to
evaluate absolute delays and we need to get all 20 subpaths. Normally, the subpaths are added already in
the channel builder.

1 s = simulation_parameters;

2 s.center_frequency = 2.53e9;

3 s.sample_density = 4;

4 s.use_subpath_output = 1;

5 s.use_absolute_delays = 1;

Second, we define a user track. Here we choose a linear track with a length of 30 m. The track start 20 m
east of the transmitter and runs in east direction, thus linearly increasing the distance from the receiver.

1 l = layout(s);

2 l.tx_position (3) = 25;

3 l.track.generate(’linear ’ ,30,0);

4 l.track.initial_position = [20;0;0];

5 l.track.scenario = ’WINNER_UMa_C2_LOS ’;

6 l.track.interpolate_positions(s.samples_per_meter);

7 l.visualize;

0 10 20 30 40 50

−25

−20

−15

−10

−5

0

5

10

15

20

25

WINNER_UMa_C2_LOS

X−Position

Tx1

Y
−

P
o

si
ti

o
n

Tx−Position

Tx−Antenna

Rx−Position

Rx−Antenna

Rx−Track

Figure 21: Scenario setup for the drifting phases tutorial

Now, we generate the LSPs. In order to get repeatable results, we set a specific random seed. This is a
MATLAB internal function and is not a feature of the channel model. We also set the shadow fading and
K-factor to 1 and disable the path loss model.

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

91

QuaDRiGa v1.2.32-458 A TUTORIALS

1 RandStream.setGlobalStream(RandStream(’mt19937ar ’,’seed’ ,5));

2 p = l.create_parameter_sets;

3 p.parameter_maps (:,:,[2 3]) = 0; % Fix SF and KF to 0

4 p.plpar = []; % Disable path loss model

5 p.update_parameters;

1 Parameters [oo] 1 seconds

Now, we generate the channel coefficients. The first run uses the new drifting module, the second run
disables it. Note that drifting needs significantly more computing resources. In some scenarios it might thus
be useful to disable the feature to get quicker simulation results.

1 s.drifting_precision = 1;

2 RandStream.setGlobalStream(RandStream(’mt19937ar ’,’seed’ ,2));

3 c = p.get_channels;

4

5 s.drifting_precision = 0;

6 RandStream.setGlobalStream(RandStream(’mt19937ar ’,’seed’ ,2));

7 d = p.get_channels;

1 Channels [oo] 12 seconds

2 Channels [oo] 7 seconds

Results and discussion The following plots represent the results of the test.

1 figure

2 distance = 20+(1:c.no_snap)*l.track.get_length/c.no_snap;

3 plot(distance , c.delay (1,:)*1e9 , ’-b’)

4 hold on

5 plot(distance , d.delay (1,:)*1e9 , ’-.b’)

6 plot(distance , c.delay (2,:)*1e9 , ’-r’)

7 plot(distance , d.delay (2,:)*1e9 , ’-.r’)

8 hold off

9 xlabel(’Distance from track start point’)

10 ylabel(’Delay [ns] ’)

The first plot (Fig. 22) shows the delay of the LOS tap (blue) and the delay of the first NLOS tap (red) vs.
distance. The solid lines are from the channel with drifting, the dashed lines are from the channel without.
The LOS delay is always increasing since the Rx is moving away from the Tx. However, the increase is not
linear due to the 25 m height of the Tx. Without drifting, the delays are not updated and stay constant
during the segment. The position of the first scatterer is in close distance to the Rx (only some m away).

20 25 30 35 40 45 50
100

110

120

130

140

150

160

170

180

190

Distance from track start point

D
el

ay
 [

n
s]

Figure 22: Cluster delays vs. Rx position (drifting phases tutorial)

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

92

QuaDRiGa v1.2.32-458 A TUTORIALS

When moving, the Rx first approaches the scatterer (delay gets a bit smaller) and then the distance increases
again.

1 phase = unwrap(angle(squeeze ((c.coeff (1,1,2,:,:)))));

2 plot(distance ,phase)

3 xlabel(’Distance from track start point’)

4 ylabel(’Continuous phase’)

The second plot (Fig. 23, left) shows the phases of the 20 subpaths of the first NLOS tap for the drifting
case. Note that the phases are not linear. This comes from the close proximity of the scatterer to the initial
Rx position. The position of all 20 reflection points are calculated by the channel model. Those position
mark the position of the last bounce scatterer (LBS). When moving the Rx, the distance to the LBS changes
for each subpath and so does the phase. Here, the phase of each of the subpaths is calculated from the
length of the path.

1 pow = abs(squeeze(sum(c.coeff (1,1,2,:,:) , 5))).^2;

2 plot(distance ,10* log10(pow),’-r’)

3 xlabel(’Distance from track start point’)

4 ylabel(’Tap power (dB)’)

This plot shows the power of the first NLOS tap along the track. The fading is significantly higher in the
beginning and becomes much less strong towards the end.

1 phase = unwrap(angle(squeeze ((d.coeff (1,1,2,:,:)))));

2 plot(distance ,phase)

3 xlabel(’Distance from track start point’)

4 ylabel(’Continuous phase’)

20 25 30 35 40 45 50
−1000

−800

−600

−400

−200

0

200

Distance from track start point

C
o

n
ti

n
u

o
u

s
p

h
as

e

20 25 30 35 40 45 50
−55

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

Distance from track start point

T
ap

 p
o

w
er

 (
d

B
)

Figure 23: Drifting phases and Tx power vs. Rx position (drifting phases tutorial)

Without drifting, the phases of the subpaths are approximated by assuming that the angles to the LBSs do
not change. However, this only holds when the distance to the LBS is large. Here, the initial distance is
small (ca. 5 m). When the initial angles are kept fixed along the track, the error is significant. Here, the
phase ramp is negative, indicating a movement direction towards the scatterer and thus a higher Doppler
frequency. However, when the scatterer is passed, the Rx moves away from the scatterer and the Doppler
frequency becomes lower. This is not reflected when drifting is turned off.

Note that with shorter delay spreads (as e.g. in satellite channels), the scatterers are placed closer to the
Rxs initial position. This will amplify this effect. Hence, for correct time evolution results, drifting needs
to be turned on.

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

93

QuaDRiGa v1.2.32-458 A TUTORIALS

1 pow = abs(squeeze(sum(d.coeff (1,1,2,:,:) , 5))).^2;

2 plot(distance ,10* log10(pow),’-r’)

3 xlabel(’Distance from track start point’)

4 ylabel(’Tap power (dB)’)

1 close all

2 disp([’QuaDRiGa Version: ’,simulation_parameters.version])

1 QuaDRiGa Version: 1.0.1 -145

20 25 30 35 40 45 50
−900

−800

−700

−600

−500

−400

−300

−200

−100

0

100

Distance from track start point

C
o

n
ti

n
u

o
u

s
p

h
as

e

20 25 30 35 40 45 50
−35

−30

−25

−20

−15

−10

−5

0

Distance from track start point

T
ap

 p
o

w
er

 (
d

B
)

Figure 24: Phases and Tx power vs. Rx position without drifting (drifting phases tutorial)

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

94

QuaDRiGa v1.2.32-458 A TUTORIALS

A.5 Time Evolution and Scenario Transitions

The channel model generates the coefficients separately for each segment. In order to get a time-continuous
output, these coefficients have to be combined. This is a feature originally described in the documentation
of the WIM2 channel model, although it was never implemented. Since this component is needed for
time-continuous simulations, it was implemented here. This script sets up the simulation and creates such
time-continuous CIRs.

Channel model setup and coefficient generation First, we set up the channel model.

1 close all

2 clear all

3

4 set(0,’defaultTextFontSize ’, 14)

5 set(0,’defaultAxesFontSize ’, 14)

6

7 s = simulation_parameters;

8 s.center_frequency = 2.53e9;

9 s.sample_density = 4;

10 s.use_absolute_delays = 1;

Second, we create a more complex network layout featuring an elevated transmitter (25 m) and two receivers
at 1.5 m height. The first Rx moves along a circular track around the receiver. The second receiver moves
away from the Tx. Both start at the same point.

Note that each track is split into three segments. The first Rx goes from an LOS area to a shaded area and
back. The second track also starts in the LOS area. Here, the scenario changes to another LOS segment
and then to an NLOS segment. The LOS-LOS change will create new small-scale fading parameters, but
the LSPs will be highly correlated between those two segments.

1 l = layout(s); % New layout

2 l.no_rx = 2; % Two receivers

3

4 l.tx_array.generate(’dipole ’); % Dipola antennas at all Rx and Tx

5 l.rx_array = l.tx_array;

6

7 l.tx_position (3) = 25; % Elevate Tx to 25 m

8

9 UMal = ’BERLIN_UMa_LOS ’;

10 UMan = ’BERLIN_UMa_NLOS ’;

11

12 l.track (1).generate(’circular ’ ,20*pi ,0); % Circular track with 10m radius

13 l.track (1).initial_position = [10;0;1.5]; % Start east , running nord

14 l.track (1).segment_index = [1 ,40 ,90]; % Segments

15 l.track (1).scenario = { UMal , UMan , UMal };

16

17 l.track (2).generate(’linear ’ ,20,0); % Linear track , 20 m length

18 l.track (2).initial_position = [10;0;1.5]; % Same start point

19 l.track (2).interpolate_positions(128/20);

20 l.track (2).segment_index = [1 ,40 ,90];

21 l.track (2).scenario = { UMal , UMal , UMan };

22

23 l.visualize; % Plot all tracks

24

25 l.track.interpolate_positions(s.samples_per_meter);

26 l.track.compute_directions;

Now we create the channel coefficients. Fixing the random seed guarantees repeatable results (i.e. the taps
will be at the same positions for both runs). Note that the computing time is significantly longer when
drifting is enabled.

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

95

QuaDRiGa v1.2.32-458 A TUTORIALS

−10 −5 0 5 10 15 20 25 30

−20

−15

−10

−5

0

5

10

15

20

BERLIN_UMa_NLOSBERLIN_UMa_LOSBERLIN_UMa_LOS

X−Position

BERLIN_UMa_LOS

BERLIN_UMa_LOS

Tx1

BERLIN_UMa_NLOS

Y
−

P
o
si

ti
o
n

Tx−Position

Tx−Antenna

Rx−Position

Rx−Antenna

Rx−Track

Figure 25: Scenario setup for the time evolution tutorial

1 RandStream.setGlobalStream(RandStream(’mt19937ar ’,’seed’ ,2));

2 p = l.create_parameter_sets;

3

4 disp(’Drifting enabled:’);

5 s.drifting_precision = 1;

6 RandStream.setGlobalStream(RandStream(’mt19937ar ’,’seed’ ,1));

7 c = p.get_channels;

8 cn = c.merge;

9

10 disp(’Drifting disabled:’);

11 s.drifting_precision = 0;

12 RandStream.setGlobalStream(RandStream(’mt19937ar ’,’seed’ ,1));

13 d = p.get_channels;

14 dn = d.merge;

1 Parameters [oo] 1 seconds

2 Drifting enabled:

3 Channels [oo] 36 seconds

4 Drifting disabled:

5 Channels [oo] 5 seconds

Results and discussion Now we plot and discuss the results. We start with the power of the LOS tap
along the circular track and compare the outcome with and without drifting (Fig. 26, left).

1 degrees = (0:cn(1).no_snap -1)/cn(1).no_snap * 360;

2 los_pwr_drift = 10* log10(squeeze(abs(cn(1).coeff (1,1,1,:))).^2);

3 los_pwr_nodrift = 10* log10(squeeze(abs(dn(1).coeff (1,1,1,:))).^2);

4

5 figure

6 plot(degrees ,los_pwr_drift)

7 hold on

8 plot(degrees ,los_pwr_nodrift ,’-.r’)

9 hold off

10

11 a = axis;

12 axis([0 360 a(3:4)]);

13

14 xlabel(’Position on circle [\ degree \]’);

15 ylabel(’Power of the LOS component ’);

16 title(’Power of the LOS component for the circular track ’);

17 legend(’Drifting ’,’No drifting ’ ,4);

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

96

QuaDRiGa v1.2.32-458 A TUTORIALS

0 50 100 150 200 250 300 350
−120

−115

−110

−105

−100

−95

−90

−85

Position on circle [Â°]

P
ow

er
 o

f
th

e
L

O
S

 c
om

po
ne

nt

Power of the LOS component for the circular track

Drifting
No drifting

Delay [µs]

P
os

it
io

n
on

 c
ir

cl
e

[Â
°]

PDP for the circular track with drifting

0 0.32 0.64 0.96 1.28 1.6 1.92 2.24

0

45

90

135

180

225

270

315

−130

−125

−120

−115

−110

−105

−100

−95

−90

Figure 26: Received power on the circular track (time evolution tutorial)

When drifting is enabled (Fig. 26, left, blue curve), the channel output after merging is time-continuous.
The variations along the track come from the drifting K-Factor and the drifting shadow fading. When
drifting is disabled, these parameters are not updated and kept fixed at their initial value.

At the end of each segment, both channels are cross-faded. I.e. the power of the output of the first segment
ramps down and the power of the second segment ramps up. Since drifting guarantees a time-continuous
evolution of the phase, this ramping process is also time continuous and no artifacts are visible in the blue
curve.

Without drifting, however, the phases are approximated based on their initial values, the initial arrival-
and departure angles and the traveled distance from the start point. However, since the Rx moves along a
circular track, the angles change continuously which is not correctly modeled. The phase at the end of the
first segment does not match the phase at the beginning of the second. When adding both components,
artifacts appear as can be seen in the red curve.

Next, we plot the power-delay profiles for both tracks. We calculate the frequency response of the channel
and transform it back to the time domain by an IFFT. Then, we create a 2D image of the received power
at each position of the track. We start with the circular track.

1 h = cn(1).fr(100e6 ,512);

2 h = squeeze(h);

3 pdp = 10* log10(abs(ifft(h,[] ,1).’).^2);

4

5 figure

6 imagesc(pdp (: ,1:256));

7 caxis([max(max(pdp)) -50 max(max(pdp))-5]);

8 colorbar

9

10 cm = colormap(’hot’);

11 colormap(cm(end:-1:1,:));

12

13 set(gca ,’XTick’ ,1:32:255);

14 set(gca ,’XTickLabel ’ ,(0:32:256) /100e6*1e6);

15 xlabel(’Delay [\mus]’);

16

17 set(gca ,’YTick’ ,1:cn(1).no_snap /8:cn(1).no_snap);

18 set(gca ,’YTickLabel ’, (0:cn(1).no_snap /8:cn(1).no_snap)/cn(1).no_snap * 360);

19 ylabel(’Position on circle [\ degree \]’);

20

21 title(’PDP for the circular track with drifting ’);

The X-axis (Fig. 26, right) shows the delay in microseconds and the Y-axis shows the position on the circle.
For easier navigation, the position is given in degrees. 0° means east (starting point), 90° means north,
180° west and 270° south. The LOS delay stays constant since the distance to the Tx is also constant.

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

97

QuaDRiGa v1.2.32-458 A TUTORIALS

However, the power of the LOS changes according to the scenario. Also note, that the NLOS segment has
significantly more taps due to the longer delay spread. Next, we create the same plot for the linear track
(Fig. 27). Note the slight increase in the LOS delay and the high similarity of the first two LOS segments
due to the correlated LSPs. Segment change is at around 6 m.

1 h = cn(2).fr(100e6 ,512);

2 h = squeeze(h);

3 pdp = 10* log10(abs(ifft(h,[] ,1).’).^2);

4

5 figure

6 imagesc(pdp (: ,1:256));

7 caxis([max(max(pdp)) -50 max(max(pdp))-5])

8 colorbar

9

10 cm = colormap(’hot’);

11 colormap(cm(end:-1:1,:));

12

13 set(gca ,’XTick’ ,1:32:255);

14 set(gca ,’XTickLabel ’ ,(0:32:256) /100e6*1e6);

15 xlabel(’Delay [\mus]’);

16

17 set(gca ,’YTick’ ,1:cn(2).no_snap /8:cn(2).no_snap);

18 set(gca ,’YTickLabel ’, (0:cn(2).no_snap /8:cn(2).no_snap)/cn(2).no_snap * 20);

19 ylabel(’Distance from start point [m]’);

20

21 title(’PDP for the linear track with drifting ’);

Last, we plot the same results for the linear track without drifting (Fig. 27, right). Note that the LOS delay
is not smooth during segment change. There are two jumps at 6 m and again at 13.5 m.

1 h = dn(2).fr(100e6 ,512);

2 h = squeeze(h);

3 pdp = 10* log10(abs(ifft(h,[] ,1).’).^2);

4

5 figure

6 imagesc(pdp (: ,1:256));

7 caxis([max(max(pdp)) -50 max(max(pdp))-5])

8 colorbar

9

10 cm = colormap(’hot’);

11 colormap(cm(end:-1:1,:));

12

13 set(gca ,’XTick’ ,1:32:255);

14 set(gca ,’XTickLabel ’ ,(0:32:256) /100e6*1e6);

15 xlabel(’Delay [\mus]’);

16

17 set(gca ,’YTick’ ,1:cn(2).no_snap /8:cn(2).no_snap);

18 set(gca ,’YTickLabel ’, (0:cn(2).no_snap /8:cn(2).no_snap)/cn(2).no_snap * 20);

19 ylabel(’Distance from start point [m]’);

20

21 title(’PDP for the linear track without drifting ’);

1 close all

2 disp([’QuaDRiGa Version: ’,simulation_parameters.version])

1 QuaDRiGa Version: 1.0.1 -145

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

98

QuaDRiGa v1.2.32-458 A TUTORIALS

Delay [µs]

D
is

ta
n

ce
 f

ro
m

 s
ta

rt
 p

o
in

t
[m

]

PDP for the linear track with drifting

0 0.32 0.64 0.96 1.28 1.6 1.92 2.24

0

2.5

5

7.5

10

12.5

15

17.5

−130

−125

−120

−115

−110

−105

−100

−95

−90

Delay [µs]

D
is

ta
n

ce
 f

ro
m

 s
ta

rt
 p

o
in

t
[m

]

PDP for the linear track without drifting

0 0.32 0.64 0.96 1.28 1.6 1.92 2.24

0

2.5

5

7.5

10

12.5

15

17.5
−130

−125

−120

−115

−110

−105

−100

−95

−90

Figure 27: Received power on the linear track (time evolution tutorial)

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

99

QuaDRiGa v1.2.32-458 A TUTORIALS

A.6 Applying Varying Speeds (Channel Interpolation)

One new feature that makes the simulations more realistic is the function to apply arbitrary speed- and
movement profiles, e.g. accelerating, breaking or moving at any chosen speed. These profiles are defined in
the track class. The profiles are then converted into effective sampling points which aid the interpolation of
the channel coefficients.

Channel model setup First, we set up the simulation parameters. Note the sample density of 2.5 which
enables very fast simulations even with drifting.

1 s = simulation_parameters;

2 s.center_frequency = 2.53e9;

3 s.sample_density = 2.5;

4 s.use_absolute_delays = 1;

Second, we define a track. It has a length of 20 m, starts at 10 m east of the transmitter and consists of
three segments (LOS, NLOS, LOS). The positions are interpolated to match the sample density defined
above. The track is then plugged into a network layout with one transmitter at position (0,0,25). Both,
transmitter and receiver are equipped with dipole antennas. The last three lines create the LSPs.

1 t = track(’linear ’ ,20,0);

2 t.initial_position = [60;0;1.5];

3 t.interpolate_positions(128/20);

4 t.segment_index = [1 ,40 ,90];

5 t.scenario = { ’WINNER_UMa_C2_LOS ’ , ’WINNER_UMa_C2_NLOS ’ ,...

6 ’WINNER_UMa_C2_LOS ’ };

7 t.interpolate_positions(s.samples_per_meter);

8

9 l = layout(s);

10 l.tx_array.generate(’dipole ’);

11 l.rx_array = l.tx_array;

12 l.tx_position (3) = 25;

13 l.track = t;

14

15 l.visualize;

16

17 RandStream.setGlobalStream(RandStream(’mt19937ar ’,’seed’ ,5));

18 p = l.create_parameter_sets;

1 Parameters [oo] 2 seconds

Channel generation and results Next, we generate the channel coefficients. Note that the initial sample
density is 2.5. We then interpolate the sample density to 20. It would take ten times as long to achieve the
same result with setting the initial sample density to 20. The interpolation is significantly faster. It is done
by first setting the speed to 1 m/s (default setting) and then creating a distance vector which contains a
list of effective sampling points along the track.

1 c = p.get_channels;

2 cn = c.merge;

3

4 t.set_speed(1);

5 dist = t.interpolate_movement(s.wavelength /(2*20));

6 ci = cn.interpolate(dist , t.get_length , ’spline ’);

1 Channels [oo] 5 seconds

The next plot shows the power of the first three taps from both, the original and the interpolated channel,
plotted on top of each other. The values are identical except for the fact, that the interpolated values (blue
line) have 5 times as many sample points.

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

100

QuaDRiGa v1.2.32-458 A TUTORIALS

0 10 20 30 40 50 60 70 80

−40

−30

−20

−10

0

10

20

30

40

WINNER_UMa_C2_LOSWINNER_UMa_C2_NLOSWINNER_UMa_C2_LOS

X−Position

Tx1

Y
−

P
o
si

ti
o
n

Tx−Position

Tx−Antenna

Rx−Position

Rx−Antenna

Rx−Track

Figure 28: Scenario setup for the speed profile tutorial

1 pwr_orig = 10* log10(squeeze(abs(cn.coeff (1,1,1:3,:))).^2);

2 nsnap = cn.no_snap;

3 dist_orig = (0:nsnap -1) * t.get_length /(nsnap -1);

4 pwr_int = 10* log10(squeeze(abs(ci.coeff (1,1,1:3,:))).^2);

5

6 figure

7 plot(dist_orig ,pwr_orig , ’r’,’Linewidth ’,2)

8 hold on

9 plot(dist ,pwr_int ,’b’)

10 hold off

11 axis([min(dist) , max(dist) ,...

12 min(pwr_orig(pwr_orig >-Inf)) , ...

13 max(pwr_orig(pwr_orig >-Inf))+10])

14

15 xlabel(’Distance from start point [m]’);

16 ylabel(’Power [dB]’);

Fig. 29 (right) shows the power delay profile (PDP) for the interpolated channel. As defined in the track
object, it starts with a LOS segment, going into a shaded area with significantly more multipath fading at
around 4 seconds and then back to LOS at around 13 sec.

0 5 10 15 20

−180

−160

−140

−120

−100

−80

Distance from start point [m]

P
o
w

er
 [

d
B

]

Delay [µs]

T
im

e
[s

]

0 0.32 0.64 0.96 1.28 1.6 1.92 2.24

0

2.5

5

7.5

10

12.5

15

17.5

−120

−115

−110

−105

−100

−95

−90

−85

−80

Figure 29: Received power and 2D PDP for the speed profile tutorial

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

101

QuaDRiGa v1.2.32-458 A TUTORIALS

1 h = ci.fr(100e6 ,512);

2 h = squeeze(h);

3 pdp = 10* log10(abs(ifft(h,[] ,1).’).^2);

4

5 figure

6 imagesc(pdp (: ,1:256));

7 caxis([max(max(pdp)) -50 max(max(pdp))-5])

8 colorbar

9

10 cm = colormap(’hot’);

11 colormap(cm(end:-1:1,:));

12

13 set(gca ,’XTick’ ,1:32:255);

14 set(gca ,’XTickLabel ’ ,(0:32:256) /100e6*1e6);

15 xlabel(’Delay [\mus]’);

16

17 set(gca ,’YTick’ ,1:ci.no_snap /8:ci.no_snap);

18 set(gca ,’YTickLabel ’, (0:ci.no_snap /8:ci.no_snap)/ci.no_snap * 20);

19 ylabel(’Time [s]’);

Now, we create a movement profile. It is defined by a set of value pairs in track.movement profile. The first
value represents the time in seconds, the second value the position on the track. Here, we start at a position
of 7 m, i.e. in the second (NLOS) segment. We then go back to the beginning of the track. This takes 5
seconds. Then, we wait there for 1 second and go to the end of the track, which we reach after additional
14 seconds.

The next step is to interpolate the sample points. This is done by the interpolate movement method. It
requires the sample interval (in s) as an input argument. Here, we choose an interval of 1 ms which gives
us 1000 samples per second. Fig. 30 (left) illustrates the results.

1 t.movement_profile = [0,7 ; 5,0 ; 6,0 ; 20,20]’;

2 dist = t.interpolate_movement(1e-3);

3 ci = cn.interpolate(dist , t.get_length);

4

5 nsnap = ci.no_snap;

6 time = (0:nsnap -1) * t.movement_profile (1,end)/(nsnap -1);

7

8 figure

9 plot(time ,dist , ’r’)

10

11 xlabel(’Time [s]’);

12 ylabel(’Position on track [m]’);

The last plot (Fig. 30, right) shows the PDP of the interpolated channel with the movement profile applied.
The channel starts in the second segment with a lot of fading, goes back to the first while slowing down at
the same time. After staying constant for one second, the channel starts running again, speeding up towards
the end of the track.

1 h = ci.fr(100e6 ,512);

2 h = squeeze(h);

3 pdp = 10* log10(abs(ifft(h,[] ,1).’).^2);

4

5 figure

6 imagesc(pdp (: ,1:256));

7 caxis([max(max(pdp)) -50 max(max(pdp))-5])

8 colorbar

9

10 cm = colormap(’hot’);

11 colormap(cm(end:-1:1,:));

12

13 set(gca ,’XTick’ ,1:32:255);

14 set(gca ,’XTickLabel ’ ,(0:32:256) /100e6*1e6);

15 xlabel(’Delay [\mus]’);

16

17 set(gca ,’YTick’ ,1:ci.no_snap /8:ci.no_snap);

18 set(gca ,’YTickLabel ’, (0:ci.no_snap /8:ci.no_snap)/ci.no_snap * 20);

19 ylabel(’Time [s]’);

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

102

QuaDRiGa v1.2.32-458 A TUTORIALS

1 close all

2 disp([’QuaDRiGa Version: ’,simulation_parameters.version])

1 QuaDRiGa Version: 1.0.1 -145

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

Time [s]

P
o

si
ti

o
n

 o
n

 t
ra

c
k

 [
m

]

Delay [µs]

T
im

e
[s

]

0 0.32 0.64 0.96 1.28 1.6 1.92 2.24

0

2.5

5

7.5

10

12.5

15

17.5

−120

−115

−110

−105

−100

−95

−90

−85

−80

Figure 30: Movement profile (left) and interpolated PDP (right)

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

103

QuaDRiGa v1.2.32-458 A TUTORIALS

A.7 Geometric Polarization

Here, we demonstrate the polarization rotation model that calculates the path power for polarized antenna
arrays. We do this by setting up the simulation with different H/V polarized antennas at the transmitter and
at the receiver. Then we define a circular track around the receiver. When the receiver moves around the
transmitter, it changes its antenna orientation according to the movement direction. In this way, all possible
departure and elevation angles are sampled. Depending on the antenna orientation, the polarizations are
either aligned (e.g. the Tx is V-polarized and the Rx is V-polarized), they are crossed (e.g. the Tx is V-
polarized and the Rx is H-polarized) or the polarization orientation is in between those two. The generated
channel coefficients should reflect this behavior.

Setting up the simulation environment First, we have to set up the simulator with some default settings.
Here, we choose a center frequency of 2.1 GHz. We also want to use drifting in order to get the correct
angles for the LOS component and we set the number of transmitters and receivers to one.

1 close all

2 clear all

3

4 set(0,’defaultTextFontSize ’, 14)

5 set(0,’defaultAxesFontSize ’, 14)

6

7 s = simulation_parameters; % Set the simulation parameters

8 s.center_frequency = 2.1e9; % Center - frequency: 2.1 GHz

9 s.use_polarization_rotation = 1;

10 s.samples_per_meter = 360/(40* pi); % One sample per degree

11 s.drifting_precision = 1;

Setting up the antenna arrays In the second step, we set up our antenna arrays. We use the synthetic
dipole antennas for this case. Those antennas show perfect polarization characteristics. First, we generate a

Element 1

−10
0

10 −10
0

10

−10

0

10

y

Vertical

x

−10
0

10 −10
0

10

−10

0

10

y

Horizontal

x

Attenuation (dB)
−18 −15 −12 −9 −6 −3 0

Element 2

−10
0

10 −10
0

10

−10

0

10

y

Vertical

x

−10
0

10 −10
0

10

−10

0

10

y

Horizontal

x

Attenuation (dB)
−19 −16 −13 −10 −7 −4 −1

Element 3

−10
0

10 −10
0

10

−10

0

10

y

Vertical

x

−10
0

10 −10
0

10

−10

0

10

y

Horizontal

x

Attenuation (dB)
−19 −16 −13 −10 −7 −4 −1

Figure 31: Polarimetric dipole antenna patterns for different orientations

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

104

QuaDRiGa v1.2.32-458 A TUTORIALS

single dipole with V-polarization. Then, we create multiple copies of this antenna element and rotate them
by 45 and 90 degrees, respectively. We then use the same array for the receiver.

1 l = layout(s); % Create a new Layout

2 l.tx_array.generate(’dipole ’); % create V- polarized dipole

3 l.tx_array.set_grid((-180:10:180)*pi/180 , (-90:10:90)*pi/180);

4

5 l.tx_array.field_pattern_vertical = ... % Normalize

6 l.tx_array.field_pattern_vertical / max(max(l.tx_array.field_pattern_vertical));

7

8 l.tx_array.set_grid((-180:5:180)*pi/180 , (-90:5:90)*pi/180);

9 l.tx_array.copy_element (1 ,2:3); % Duplicate the element two more times

10 l.tx_array.rotate_pattern (45,’y’ ,2); % 45\ degree\ polarization

11 l.tx_array.rotate_pattern (90,’y’ ,3); % 90\ degree\ polarization

12 l.tx_array.visualize; % Plot the array

13 l.rx_array = l.tx_array; % Use the same array for the Rx

Defining a track The third step defines the track. Here, we use a circle with 20 m diameter starting in
the east, traveling north. We also choose a LOS scenario since we want to study the LOS polarization. The
transmitter is located 8 m north of the center of the circle at an elevation of 2 m.

1 l.tx_position = [0 ; 12 ; 6]; % Tx position

2 l.rx_position = [20 ; 0 ; 0]; % Start position for the Rx track

3 l.track.generate(’circular ’ ,40*pi ,0); % A circular track with radius 10 m

4 l.track.scenario = ’BERLIN_UMa_LOS ’; % Chosse the Urban Macro LOS scenario

5 l.track.interpolate_positions(s.samples_per_meter); % Interpolate positions

6 l.visualize; % Plot the track

−20 −15 −10 −5 0 5 10 15 20

−20

−15

−10

−5

0

5

10

15

20

Tx1

X−Position

BERLIN_UMa_LOS

Y
−

P
o
si

ti
o
n

Tx−Position

Tx−Antenna

Rx−Position

Rx−Antenna

Rx−Track

Figure 32: Scenario layout

Generating channel coefficients Now, we have finished the parametrization of the simulation and we can
generate the parameters. We thus create a new set of correlated LSPs and fix the shadow fading and the
K-factor to some default values. This disables the drifting for those parameters. We need to do that since
otherwise, drifting and polarization would interfere with each other.

1 RandStream.setGlobalStream(RandStream(’mt19937ar ’,’seed’ ,1));

2

3 p = l.create_parameter_sets; % Create parameter sets

4 p.parameter_maps (:,:,2) = 3; % Fix KF to 3 dB

5 p.parameter_maps (:,:,3) = 0; % Fix SF to 0 dB

6 p.plpar = []; % Disable path loss model

7 p.update_parameters;

8

9 [c,cb] = p.get_channels; % Get the channel coefficients

1 Parameters [oo] 1 seconds

2 Channels [oo] 3 seconds

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

105

QuaDRiGa v1.2.32-458 A TUTORIALS

Results and Evaluation We now check the results and confirm, if they are plausible or not. We start with
the two vertically polarized dipoles at the Tx and at the Rx side.

The model creates 8 taps, which is the default for the Urban-Macro LOS scenario. Without path-loss and
shadow fading (SF=1), the power is normalized such that the sum over all taps is 1W and with a K-Factor
of 3 dB, we get a received power of 0.67W for the LOS component. The remaining 0.33W are in the NLOS
components. The results can be seen in Fig. 33 (top left).

1 figure % New figure

2 plot(abs(squeeze(c.coeff (1,1,:,:)) ’).^2); % Plot the graph

3 axis ([0 360 -0.1 1]); % Set the axis

4 xlabel(’Position [degrees]’); % Add description

5 ylabel(’LOS Power , linear scale’);

6 title(’Tx: Vertical , Rx: Vertical ’); % Add title

7

8 disp([’LOS power: ’,num2str(mean(abs(c.coeff (1,1,1,:)).^2 , 4))])

9 disp([’NLOS power: ’,num2str(mean(sum(abs(c.coeff (1,1,2:end ,:)).^2,3) , 4))])

1 LOS power: 0.52851

2 NLOS power: 0.22249

The LOS power is almost constant when the Rx is south of the Tx. However, in close proximity (at 90°),
the power is lowered significantly. This comes from the 2 m elevation of the Tx. When the Rx is almost
under the Tx, the radiated power of the Dipole is much smaller compared to the broadside direction. The
average power of the LOS is thus also lowered to 0.56 W. The average sum-power if the 7 NLOS components

0 50 100 150 200 250 300 350
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Position [degrees]

L
O

S
 P

o
w

er
,

li
n

ea
r

sc
al

e

Tx: Vertical , Rx: Vertical

0 50 100 150 200 250 300 350
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Position [degrees]

L
O

S
 P

o
w

er
,

li
n

ea
r

sc
al

e

Tx: Vertical , Rx: 45°

Tx vertical, Rx 45°

Tx 45°, Rx vertical

0 45 90 135 180 225 270 315 360
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Position on circle [degrees]

L
O

S
 P

o
w

er
,

li
n

ea
r

sc
al

e

Tx: 45° , Rx: 45°

0 50 100 150 200 250 300 350
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Position [degrees]

L
O

S
 P

o
w

er
,

li
n

ea
r

sc
al

e

Tx: 90° , Rx: 0°, 45°, 90°

Rx: 0°

Rx: 45°

Rx: 90°

Figure 33: Results from the geometric polarization tutorial

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

106

QuaDRiGa v1.2.32-458 A TUTORIALS

is 0.26 W. This mainly come from the XPR which leakes some power from the vertical- into the horizontal
polarization and thus reduces the received power on the vertically polarized Dipole.

Next, we study two cases. Either the Tx is vertical polarized and the Rx is at 45° or vise versa (Fig. 33, top
right).

1 figure % New figure

2 plot(abs(squeeze(c.coeff (2,1,1,:))).^2); % Tx vertical , Rx 45\ degree\

3 hold on

4 plot(abs(squeeze(c.coeff (1,2,1,:))).^2,’--r’); % Tx 45\ degree\, Rx vertical

5 hold off

6 axis ([0 360 -0.1 1]);

7 legend(’Tx vertical , Rx 45\ circ’, ’Tx 45\circ , Rx vertical ’)

8 xlabel(’Position [degrees]’);

9 ylabel(’LOS Power , linear scale’);

10 title(’Tx: Vertical , Rx: 45\ circ’);

The receiver changes its direction in a way that it always has the same orientation towards the Tx. However,
due to the displacement of the Tx, the radiated power towards the Tx becomes minimal at around 90°. This
minimum is visible in both curves (blue and red). However, the pole of the 45°slanted dipole now points
to a different direction which explains the difference in the two lines. When the Rx is at 45°and the Tx
is vertical, the pole is in the right half if the circle - resulting in a lower received power. When the Rx is
Vertical and the Tx is 45°, the minimum power is achieved in the left half of the circle.

Next, we evaluate the two dipoles which are rotated by 45°. When moving around the circle, the Tx stays
fixed and the Rx rotates. Subsequently, at one position, we will have both dipoles aligned and at another
position, both will be crossed. When they are crossed, the received power will be 0 and when they are
aligned, the power will match the first plot (two vertical dipoles). This can be seen in the following figure.

1 figure % New figure

2 plot(abs(squeeze(c.coeff (2,2,1,:))).^2 , ’Linewidth ’ ,1);

3 axis ([0 360 -0.1 1]);

4 set(gca ,’XTick’ ,0:45:360)

5 xlabel(’Position on circle [degrees]’);

6 ylabel(’LOS Power , linear scale’);

7 title(’Tx: 45\ circ , Rx: 45\ circ’);

In the last figure, we rotated the transmit antenna by 90°. It is thus lying on the side and it is horizontally
polarized. For the Rx, we consider three setups: Vertical (blue line), 45°(green line) and 90°(red line). Note
that the Tx is rotated around the y-axis. At the initial position (0°), the Rx (45 and 90°) is rotated around
the x-axis. This is because the movement direction.

1 figure % New figure

2 plot(abs(squeeze(c.coeff (:,3,1,:))) ’.^2);

3 axis ([0 360 -0.1 1]);

4 legend(’Rx: 0\circ’,’Rx: 45\ circ’,’Rx: 90\ circ’)

5 xlabel(’Position [degrees]’);

6 ylabel(’LOS Power , linear scale’);

7 title(’Tx: 90\ circ , Rx: 0\circ , 45\circ , 90\ circ’);

When the receiver is vertical (blue line), both antennas are always crossed. There is no position around the
circle where a good link can be established. When the receiver is horizontal (red line), however, there are
two points where the two dipoles are aligned. For the 45°dipole, the same behavior can be observed but
with roughly half the power.

1 close all

2 disp([’QuaDRiGa Version: ’,simulation_parameters.version])

1 QuaDRiGa Version: 1.0.1 -145

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

107

QuaDRiGa v1.2.32-458 A TUTORIALS

A.8 Visualizing RHCP/LHCP Patterns

The internal algorithms of the channel model only work with linear polarization. The antenna patterns
are thus only stored in H/V polarization. This script defines two circular patch antennas and places them
in an environment. It then rotates the transmit antenna degree by degree and thus samples all azimuth
and elevation angles. The channel model is set up to record the channel response and thus record the
RHCP/LHCP response like in a measurement in an anechoic chamber.

Set up the array We set up a patch antenna with an opening angle of 120° . We then copy that patch and
rotate it by 90° around the x-axis to create an X-Pol array. We then set the coupling to +/- 90° phase to
transmit circular polarized waves.

1 resolution = 10; % in Degrees

2

3 a = array(’custom ’ ,120,120,0);

4 a.set_grid((-180: resolution :180)*pi/180 , (-90: resolution :90)*pi/180);

5 a.copy_element (1,2);

6

7 b = a.copy_objects;

8

9 a.rotate_pattern (90,’x’ ,2);

10 a.coupling = 1/sqrt (2) * [1 1;1j -1j];

11

12 b.rotate_pattern (90,’x’ ,2);

13 b.coupling = 1/sqrt (2) * [1 1;1j -1j];

Place arrays in layout We place two of those arrays in a layout. The scenario ’LOSonly’ has no NLOS
scattering. One can see this setup as a perfect anechoic chamber.

1 l = layout;

2 l.simpar.show_progress_bars = 0;

3 l.simpar.drifting_precision = 0;

4

5 l.rx_position = [11;0;0];

6 l.track.no_snapshots = 1;

7 l.track.ground_direction = pi;

8 l.track.scenario = ’LOSonly ’;

9 l.tx_array = a;

10 l.rx_array = b;

11

12 p = l.create_parameter_sets;

13 [~,cb] = p.get_channels;

14 cb.pin = zeros(size(cb.pin));

Get array response We now sample the array response for each degree in the antenna array.

1 pat = zeros(a.no_el , a.no_az , 2 , 2);

2

3 values = a.no_az;

4 fprintf(’Calculating [’); m0=0; tStart = clock; % A Status message

5 for n = 1:a.no_az

6 m1=ceil(n/values *50); if m1 >m0; for m2=1:m1 -m0; fprintf(’o’); end; m0=m1; end;

7

8 a1 = a.copy_objects;

9 a1.rotate_pattern(a.azimuth_grid(n)*180/pi , ’z’);

10

11 for m=1:a.no_el

12 a2 = a1.copy_objects;

13 a2.rotate_pattern(a.elevation_grid(m)*180/pi,’y’);

14 cb.tx_array = a2;

15 c = cb.get_channels;

16 pat(m,n,:,:) = c.coeff;

17 end

18 end

19 fprintf(’] %5.0f seconds\n’,round(etime(clock , tStart)));

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

108

QuaDRiGa v1.2.32-458 A TUTORIALS

1 Calculating [oo] 17 seconds

Plot For plotting we use the internal function of the array class. We adjust the title of the figures accord-
ingly.

1 d = a.copy_objects;

2 d.field_pattern_vertical = pat(:,:,:,1) ;

3 d.field_pattern_horizontal = pat(:,:,:,2) ;

4 x = d.visualize;

5

6 set(x(1,11),’String ’,’RHCP -RHCP’)

7 set(x(1,12),’String ’,’RHCP -LHCP’)

8

9 set(x(2,11),’String ’,’LHCP -RHCP’)

10 set(x(2,12),’String ’,’LHCP -LHCP’)

1 close all

2 disp([’QuaDRiGa Version: ’,simulation_parameters.version])

1 QuaDRiGa Version: 1.0.1 -145

Element 1

−10
0

10 −10
0

10

−10

0

10

y

RHCP−RHCP

x

−10
0

10 −10
0

10

−10

0

10

y

RHCP−LHCP

x

Attenuation (dB)
−6 −3 0 3 6 9 12

Element 2

−10
0

10 −10
0

10

−10

0

10

y

LHCP−RHCP

x

−10
0

10 −10
0

10

−10

0

10

y

LHCP−LHCP

x

Attenuation (dB)
−6 −3 0 3 6 9 12

Figure 34: RHCP / LHCP antenna patterns

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

109

QuaDRiGa v1.2.32-458 A TUTORIALS

A.9 How to manually set LSPs in QuaDRiGa

This tutorial explains, how to generate a time-series of channel coefficients with manual selection of LSPs.

Setting general parameters We set up some basic parameters such as center frequency, sample density
and the position of the transmitter.

1 close all

2 clear all

3

4 set(0,’defaultTextFontSize ’, 14) % Set default font size for the plots

5 set(0,’defaultAxesFontSize ’, 14)

6

7 s = simulation_parameters; % Basic simulation parameters

8 s.center_frequency = 2.185e9; % Center Frequency

9 s.sample_density = 4; % 4 samples / half wave length

10

11 l = layout(s); % Create Layout

Setting up a user track QuaDRiGa needs the positions of transmitter and receiver, e.g. for calculating the
polarization or the arrival and departure angels. The positioning information of the Tx and Rx is essential
also when the LSPs are not calculated. The following generates a linear track with 20 m length having a
direction. The track is further split into 4 segments of 5 m length.

The splitting is done by calling the method ’split segment’ of the track object. The the first two arguments
of that function are the minimum length of a segment (1 m) and the maximum length of the segment (6
m). Each existing segment that is longer then the maximum length is split into subsegments. The length
of those segments is random where the third and fourth parameter determine the mean and the STD of
the length of new subsegment. Hence, ’t.split segment(1,6,5,0)’ splits all segment longer than 6 m into
subsegments of 5 m length.

Each segment gets assigned a scenario. This is also essential since many parameters (such as the number of
clusters, the XPR etc.) are scenario-specific. Hence, they are the same for the entire scenario. Here, we set
the first the segments to NLOS, the third to LOS and the last to NLOS.

Last, we set a random starting position for the track in the layout.

1 l.tx_position = [0;0;25]; % Set Tx -position

2

3 t = track(’linear ’ ,20); % Linear track , 20 m length

4 t.interpolate_positions(s.samples_per_meter); % Interpolate to sample density

5 t.split_segment(1,6,5,0) % Split in 4 segments

6

7 Un = ’WINNER_UMa_C2_NLOS ’;

8 Ul = ’WINNER_UMa_C2_LOS ’;

9 t.scenario = {Un,Un ,Ul,Un}; % Set scenarios

10

11 l.randomize_rx_positions(500,0,0,0); % Random start position

12 tmp = l.rx_position;

13 l.track = t;

14 l.rx_position = tmp;

15

16 l.visualize;

Manual setting of the parameters Now we initialize the parameter-set objects.

The method ”l.create parameter sets” splits the track into smaller sub-tracks, one for each segment. It
further extracts the scenario informations. Each scenario gets its own parameter-set object. So we get an

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

110

QuaDRiGa v1.2.32-458 A TUTORIALS

0 50 100 150 200 250 300 350 400 450 500 550

−250

−200

−150

−100

−50

0

50

100

150

200

250

WINNER_UMa_C2_NLOSWINNER_UMa_C2_NLOSWINNER_UMa_C2_LOSWINNER_UMa_C2_NLOS

X−Position

Tx1

Y
−

P
o
si

ti
o
n

Tx−Position

Tx−Antenna

Rx−Position

Rx−Antenna

Rx−Track

Figure 35: Scenario overview (manual parameter selection)

array of two parameter sets. The first element p(1) has three positions (NLOS segments) and the second
has one position (LOS segment).

1 p = l.create_parameter_sets (1);

2

3 p(1).name

4 p(1).no_positions

5

6 p(2).name

7 p(2).no_positions

1 Parameters [oo] 5 seconds

2

3 ans =

4

5 WINNER -UMa -C2-NLOS_Tx1

6

7

8 ans =

9

10 3

11

12

13 ans =

14

15 WINNER -UMa -C2-LOS_Tx1

16

17

18 ans =

19

20 1

We set the number of clusters for the NLOS segments to 14. Currently, it is not possible to have a different
number of clusters for each segment, i.e. it is not possible for the first NLOS segment to have 14 clusters
and for the second to have only 10.

1 p(1).scenpar.NumClusters = 14;

In order to manually set the parameters, we have to overwrite the original settings. We do this here for the
delay spread. The automatically generated values are:

1 [p(1).ds(1) p(1).ds(2) p(2).ds(1) p(1).ds(3)]*1e6

1

2 ans =

3

4 0.2696 0.2433 0.0948 0.2094

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

111

QuaDRiGa v1.2.32-458 A TUTORIALS

We want to set the values of the four segments to 0.45, 0.33, 0.12 and 0.60 microseconds. This is done by:

1 p(1).ds(1) = 0.45e-6;

2 p(1).ds(2) = 0.33e-6;

3 p(2).ds(1) = 0.12e-6;

4 p(1).ds(3) = 0.60e-6;

The K-Factor and the shadow fading are read from the map during the generation of channel coefficients.
This would overwrite any manual values. However, this could be deactivated. A drawback is that in this
case the KF, SF and PL are only updated once per segment. This will result in a step-like function of the
output power. There is currently no method the set the power manually on a per-snapshot basis.

In the following example, we want to fix the received power to -102, -97, -82 and -99 dBm. K-Factors are
taken from the map.

1 p(1).plpar = []; % Disable path loss for NLOS

2 p(2).plpar = []; % Disable path loss for LOS

3

4 p(1).sf = 10.^(0.1*[-102 , -97, -99]); % Set power for NLOS segments

5 p(2).sf = 10.^(0.1*[-82]); % Set power for LOS segments

6

7 p(1).map_valid = false; % Disable automatic overwrite for NLOS

8 p(2).map_valid = false; % Disable automatic overwrite for LOS

Calculate channel coefficients Now we calculate the coefficients and the received power along the path.
The following command calculate the channel coefficients. We then check the number of clusters that have
been produced for each segment.

1 cm = p.get_channels; % Calculate the channel coefficients

2 cat(1, cm.no_path) % Display the number of paths

1 Channels [oo] 7 seconds

2

3 ans =

4

5 14

6 14

7 14

8 8

The first three segments have 14 clusters. This has been set earlier. The last LOS segment has 15 clusters.
One can see, that the three NLOS segment come first, followed by the LOS segment. The order has been
scrambled. The following command sorts and combines the segments into one fading sequence.

1 c = cm.merge;

We now plot the power along the path. You can see the power levels of around -102, -97, -82 and -99 dBm
which have been set earlier. Each segment has a transition area (e.g. from 2.5m to 5m, from 7.5m to 10m
and from 12.5m to 15m) where the merging took place. In those areas, the power is scaled linearly. That
means that, for example, in between 7.5 and 10m, the power ramps up from -97 to -82 dBm.

1 power = squeeze(sum(abs(c.coeff).^2,3));

2 power = 10* log10(power);

3

4 figure

5 [~,dist] = t.get_length;

6 plot(dist ,power)

7 title(’Simulated Power’)

8 xlabel(’Distance from start point [m]’)

9 ylabel(’Received Power [dBm]’)

10 axis ([0,20,-110,-80])

11 grid on

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

112

QuaDRiGa v1.2.32-458 A TUTORIALS

0 5 10 15 20
−110

−105

−100

−95

−90

−85

−80
Simulated Power

Distance from start point [m]

R
ec

ei
v

ed
 P

o
w

er
 [

d
B

m
]

Figure 36: Power along the track (manual parameter selection)

The last plot shows the DS along the path. The results reflect the settings of 0.45, 0.33, 0.12 and 0.60 quiet
well. As for the power, there is an overlap in between the segments. For example, in between 7.5 and 10m
the DS drops from 0.33 to 0.12 microseconds. Additional fluctuations are caused by small scale fading.

1 coeff = squeeze(c.coeff);

2 delay = c.delay;

3

4 pow_tap = abs(coeff).^2;

5 pow_sum = sum(pow_tap);

6 mean_delay = sum(pow_tap .* delay) ./ pow_sum;

7 ds = sqrt(sum(pow_tap .*delay .^2)./ pow_sum - mean_delay .^2);

8

9 figure

10 plot(dist ,ds*1e6)

11 title(’Simulated Delay Spread ’)

12 xlabel(’Distance from start point [m]’)

13 ylabel(’RMS DS [\mus]’)

14 axis ([0,20 ,0 ,1])

15 grid on

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Simulated Delay Spread

Distance from start point [m]

R
M

S
 D

S
 [

µ
s]

Figure 37: DS along the track (manual parameter selection)

1 close all

2 disp([’QuaDRiGa Version: ’,simulation_parameters.version])

1 QuaDRiGa Version: 1.0.1 -145

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

113

QuaDRiGa v1.2.32-458 B DEPARTURE AND ARRIVAL ANGLES (ADOPTED WINNER METHOD)

B Departure and Arrival Angles (Adopted WINNER Method)

In the WINNER model, the azimuth arrival and departure angels are modeled using a wrapped Gaussian
distribution (see [3], page 39).

P (φ) =
1

σφ
√

2π
· exp

(
−φ2

2σφ2

)
(94)

The wrapping is applied later by (97) when the discrete cluster angles are drawn from the statistics. Since
the above formula assumes a continuous spectrum, whereas the channel model uses discrete paths, we need
to correct the variance by a function Cφ(L,K). This function ensures that the input variance σφ is correctly
reflected in the generated angles. The same approach was taken by the WINNER model. However, [3] does
not explain how the correction values were obtained.

Generation of azimuth and elevation angles The individual angles φl are obtained by first normalizing
the power angular spectrum so that its maximum has unit power. We can thus omit the scaling factor
1/(σφ

√
2π). The path powers P l (21) are also normalized such that the strongest peak with unit power

corresponds to an angle φ = 0. All other paths get relative departure or arrival angles depending on their
power,

φ
[1]
l =

σφ
Cφ(L,K)

·

√
−2 · ln

(
P l

max(P l)

)
. (95)

Next, two random variables, X l and Y l are drawn, where X l ∼ {−1, 1} is the positive or negative sign and

Y l ∼ N (0,
(σφ

7

)2
) introduces a random variation on the angle. The angles φ

[1]
l are then updated to

φ
[2]
l = X l · φ

[1]
l + Y l. (96)

If the power P l of a path is small compared with the strongest peak, its angle φ
[2]
l might exceed ±π. In this

case, it is wrapped around the unit circle by a modulo operation

φ
[3]
l =

(
φ

[2]
l + π mod 2π

)
− π. (97)

In case of elevation spreads, the possible range of elevation angles goes from −π/2 to π/2. In this case,

the values φ
[3]
l need an additional correction. This is done using (36). The positions of the Tx and Rx are

deterministic, and so are the angles of the LOS component. This is taken into account by updating the
values of the angles in order to incorporate the LOS angle

φ
[4]
1 = 0 (98)

φ
[5]
l = φ

[4]
l + φLOS . (99)

Finally, the NLOS cluster-paths are split into 20 sub-paths to emulate intra cluster angular spreads.

Calculation of Cφ(L,K) The correction function Cφ(L,K) takes the influence of the KF and the varying
number of clusters on the angular spread into account. To approximate the function, random powers Pl and
angles φl are generated with the correction function set to Cφ = 1. The powers are calculated as described
in Section 3.2 with different values of K included. Based on those values, the actual RMS angular spread

σ
[actual]
φ is calculated using equations (26), (27), and (28). The correction function follows from comparing

σ
[actual]
φ with σφ. However, two aspects need to be considered:

1. Due to the randomization of the angles in (96), we have to take the average angle over a sufficiently

large quantity (≈ 1000 realizations) of σ
[actual]
φ . This value is denoted as σ

[avg.]
φ .

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

114

QuaDRiGa v1.2.32-458 B DEPARTURE AND ARRIVAL ANGLES (ADOPTED WINNER METHOD)

2. There is a nonlinear relationship between the angular spread in the simulated data σ
[avg.]
φ and the

initial value σφ. This comes from the logarithm in (95) and the modulo in (97). However, for small
values, the relationship can be approximated by a linear function. The maximum angular spread σmax

φ

is defined as the point where the error between the corrected value
σφ

Cφ(L,K) and σ
[avg.]
φ is 10°.

For a range of typical values L ∈ [2, 42] and K [dB] ∈ [−20, 20], Cφ(L,K) can be numerically calculates as

Cφ(L,K) =
1

σmax
φ

·
∫ σmax

φ

0

σ
[avg.]
φ (σφ)

σφ
dσφ , (100)

where the σφ-dependency of σ
[avg.]
φ (σφ) comes from the individual angles φl.

KF [dB]
L

C
φ
(L

,K
)

-20 -10 0 10 2010
20

30
40
0

0.5
1

1.5
2

0 20 40 60 80 100 120 140 160 180
0

50

100

150

200

250

Requested Angular Spread σ
φ
 [°]

A
n

g
u

la
r

S
p

re
a

d
 i
n

 D
a

ta
 [

°]

Generated Value

Unity

Figure 38: Visualization of the angular spread correction function Cφ(L,K). Left: Surface plot of Cφ(L,K)
for different values of L and K. Right: Scatter-plot of the initial angular spread σφ vs. the output
of the model (with correction).

Correction of the angular spread in the WINNER model The proposed correction function for the
WINNER model (see [3], pp. 39) works as follows: The individual angles (95) are calculated by

φ
[1]
l =

2 · σφ1.4

C
·

√
− ln

(
P l

max(P l)

)
, (101)

where C depends on the numbers of paths (see Table 12). The KF is corrected by a polynomial of third
grade. With the constant coefficients in (101) and the factor of 2 in the square root of (95), the correction
function Cφ(L,K) of the WINNER model is

CWINNER
φ (L,K) = C ·

(
1.1035− 0.028 ·K − 0.002 ·K2 + 0.0001 ·K3

)
. (102)

A comparison the both functions for different values of L and K is given in Table 13. In the second column,
the letter W indicates the value for the WINNER model and the letter Q indicates the value of the adopted
function. The polynomial has a value of 1 at KF values -11.65, 3.11, and 28.54. At those points, the
WINNER correction function is independent of the KF. The corresponding rows are highlighted in the
table. Generally, both functions are similar. They agree best as KF values around -14, -3, and 12 but show
differences at other values.

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

115

QuaDRiGa v1.2.32-458 B DEPARTURE AND ARRIVAL ANGLES (ADOPTED WINNER METHOD)

Table 12: Correction values from [3] for different numbers of paths

L 4 5 8 10 11 12 14 15 16 20
C 0.779 0.860 1.018 1.090 1.123 1.146 1.190 1.211 1.226 1.289

Table 13: Comparison of the correction functions

KF Number of paths (L)
[dB] W/Q 4 5 8 10 11 12 14 15 16 20

-11.7 W 0.779 0.860 1.018 1.090 1.123 1.146 1.190 1.211 1.226 1.289
Q 0.765 0.822 0.904 0.923 0.929 0.935 0.935 0.935 0.935 0.943

-8.0 W 0.895 0.988 1.169 1.252 1.290 1.316 1.366 1.391 1.408 1.480
Q 0.790 0.820 0.857 0.870 0.880 0.890 0.977 1.020 1.070 1.250

-4.0 W 0.917 1.012 1.198 1.283 1.322 1.349 1.401 1.425 1.443 1.517
Q 0.713 0.777 1.047 1.213 1.277 1.340 1.427 1.470 1.500 1.613

0.0 W 0.860 0.949 1.123 1.203 1.239 1.265 1.313 1.336 1.353 1.422
Q 0.830 0.990 1.277 1.380 1.420 1.460 1.520 1.550 1.570 1.637

3.1 W 0.779 0.860 1.018 1.090 1.123 1.146 1.190 1.211 1.226 1.289
Q 0.926 1.029 1.221 1.295 1.325 1.354 1.391 1.409 1.425 1.481

4.0 W 0.752 0.831 0.983 1.053 1.085 1.107 1.149 1.170 1.184 1.245
Q 0.930 1.020 1.190 1.257 1.283 1.310 1.343 1.360 1.373 1.420

8.0 W 0.625 0.690 0.817 0.875 0.901 0.920 0.955 0.972 0.984 1.035
Q 0.820 0.870 0.967 1.003 1.017 1.030 1.057 1.070 1.077 1.103

12.0 W 0.508 0.561 0.664 0.711 0.733 0.748 0.776 0.790 0.800 0.841
Q 0.627 0.653 0.707 0.727 0.733 0.740 0.760 0.770 0.773 0.793

16.0 W 0.431 0.476 0.563 0.603 0.621 0.634 0.658 0.670 0.678 0.713
Q 0.443 0.457 0.490 0.503 0.507 0.510 0.517 0.520 0.523 0.537

20.0 W 0.423 0.467 0.553 0.592 0.610 0.623 0.647 0.658 0.666 0.701
Q 0.300 0.310 0.320 0.323 0.327 0.330 0.337 0.340 0.343 0.350

Copyright: Fraunhofer Heinrich Hertz Institute
eMail: quadriga@hhi.fraunhofer.de

116

	Introduction and Overview
	Installation and System Requirements
	General Remarks
	Introduction to QuaDRiGa
	Continuous time evolution
	QuaDRiGa Program Flow
	Description of modeling of different reception conditions by means of a typical drive course

	Software Structure
	Overview
	Description of Classes, Properties, and Methods
	Class ``simulation_parameters''
	Class ``array''
	Class ``track''
	Class ``layout''
	Class ``parameter_set''
	Class ``channel_builder''
	Class ``channel''

	Data Flow
	Scenario Specific Parameters
	Description of the Parameter Table
	Adding New Scenarios

	Technical Documentation
	Correlated Large-Scale Parameter Maps
	Initial Delays and Path Powers
	Departure and Arrival Angles
	Drifting
	Antennas and Polarization
	Relation between the Polarization Model and the Jones Calculus
	Changing the Orientation of Antennas
	Constructing the Polarization Transfer Matrix

	Combining Sub-Paths into Paths
	Path Gain, Shadow Fading and K-Factor
	Transitions between Segments
	Postprocessing / Variable Speeds

	Tutorials
	Network Setup and Parameter Generation
	Simulating a Measured Scenario
	Generation of Satellite Channels
	Drifting Phases and Delays
	Time Evolution and Scenario Transitions
	Applying Varying Speeds (Channel Interpolation)
	Geometric Polarization
	Visualizing RHCP/LHCP Patterns
	How to manually set LSPs in QuaDRiGa

	Departure and Arrival Angles (Adopted WINNER Method)

